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Recap: Generative Adversarial Network

Def: GAN is composed by a generative model G that captures the data distribution, and a discriminative model D that
estimates the probability that a sample came from the training data rather than G. The training procedure for G is to
maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game.
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Recap: Adaptive Gradient Descent

Def: Using observed gradients to help optimization process adapt to local or global smoothness and convexity and automatically learn the step
size.

Adam -> Adaptive + Momentum
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MinMax Optimization

Elel{tl r‘flg}}( F(u,v) := Eeop Lf(u,v;€)]

where U, V are closed and convex sets, F'(u, v) is possibly non-convex in u and non-concave in v.
Idea Goal: find a saddle point (U, Vy) — F(uy,Vv) < F(uy,vy) < F(u,v,) (NP Hard)

Final Goal: find the first-order stationary point — V,F(u,v) =0,V F(u,v) =0 {Necessary Cond)

{Def: x=W,v), T(x;&) =[V,F(u,v;&),-V,F(u,v; )]’ (min min)}




MinMax Optimization & SVI/MVI

fbef-‘ Xx= (), T(x;&) =[VyF(u,v;&),-V,Fu,v; 51"
Goal: solve ||IT (x; &l < €

Tool: variational inequality SVI/MVI

::SVI: Stampacchia Variational Inequalityinequality

find X such that (T' (Xy), X —4) =0 forV xe X
MVI: Minty Variational Inequalityinequality

find Xy such that (T (x), X — X4) =0 forV xe X

Note: ¢-first-order stationary point means ||T(x;¢)|| < €.




MinMax Optimization & SVI/MVI

Definition 1 (Monotonicity). An operator T is monotone if (T'(x)—T1(y),x—y) > 0 forvx,y € X.
(

An operator T is pseudo-monotone if (T'(x),y —x) > 0= (T(y),y — xz >0 forVx,y € X. An
operator T' is y-strongly-monotone if (I'(x) — T(y),x —y) > 2||x —y||* for Vx,y € X.

Strong-monotonicity => monotonicity => pseudo-monotonicity

Conslusion: 1. SVI has a solution, MVI must has a resolution.

2. When F is convex in u and concave in v, T is monotone, the SVI solution is our target;

When F is non-convex in u and non-concave in v, If assuming T is Lipschitz continuous,
our target is a subset of SVI solution,



MinMax Optimization & SVI/MVI

How to solve SVI? Stochastic Approximation(SA)

xk+1 — H[xk o ak’F(gkaxk)]a

where II is the Euclidean projection onto X, {£*} is a sample of £ and {a4} is a
sequence of positive steps. In [18], the almost sure (a.s.) convergence is proved
assuming L-Lipschitz continuity of 7', strong monotonicity or strict monotonicity of
T, stepsizes satisfying 3", a = 00, Y., a2 < oo (with 0 < oy < 2p/L?, assuming that
T is p-strongly monotone), and an unbiased oracle with uniform variance, i.e., there
exists o > 0 such that for all z € X,

Ref: Tusem, Alfredo N., et al. "Extragradient method with variance reduction for stochastic variational inequalities." STAM Journal on Optimization 27.2 (2017): 686-724.



Optimistic Stochastic Gradient

Define g;, = W}k S T (zk; &), then the update rule of Algorithm 1 becomes
Algorithm 1 Optimistic Stochastic Gradient (OSG) )
I 0 Z = Xgp—1 — N8k—1
l: Input: zg = xg =
put: zg 0 and
2: fork=1,...,N do Xk = Xp_1 — 8.
3: oz =1y {Xk—l —n: mkl_l Z:'r;kl_l T(2zk—1; 511_1)} These two equalities together imply that
1 m i — —AI_—2A:[ A—_2A’]
4:  xp =Ily le;—l - N s Zi:k1 T(Zk,flzc)} Pl = Xk 18k = Xk-1 S8k =2k T NBk-1 T S8k
5: end for 1 & - 1 ~
—z,— 2 T(zi; €1) + 1 - T(zh_1; €l
Bl = 2 = 20 ; (Zk; &) + 1 p— > T(zr-138 )

1 =1

_ fixed gradient at step k, k-1
Theorem 1. Suppose that Assumption 1 holds. Let r.(zr) = ||zx — Uy (zx — T (2z1))||. Let
n < 1/9L and run Algorithm 1 for N iterations. Then we have

8llxg — %, |12 100n2 <N o2
E [r2(z4)] < %0 — X.|| . 1007 o

1 N
Nk:1 - N N — my

Corollary 1. Consider the unconstrained case where X = R¢. Letn < 1/9L, and we have

N N
1 8||xp — x.||* 100 o?
= 2 EIT(@0)]3 < +
k=1

’172N N —0 mp ’



Optimistic Stochastic Gradient

Corollary 1. Consider the unconstrained case where X = R%. Let n < 1/9L, and we have

8||x0 — x.||> 100

(o)
E||T(z
NZ Il < =+

Conclusion

. (Increasing Minibatch Size) Let n = 5, mp = k + 1. To guarantee
~ Zk . ]E\|T(zk;)||2 < €2, the total number of iterations is N = O(e¢~2), and the total
complexity is Z P11 Mk = O(e™*), where O(-) hides a logarithmic factor of e.

* (Constant Minibatch Size) Let n = g, my, = 1/€2. To guarantee ~ ij:l E||7T(zx)])3 <
€2, thcj1 total number of iterations is N = O(e~2), and the total complexity is S r_ my =
O(e™%).



Optimistic AdaGrad

Recap AdaGrad in Minimization Probelm:

min F(w) = Ecopf(w; () w1 =wy —nH; '8
weRd

1
A . A A 5
where n > 0, g = Vf(wy; (), Hy = diag ((22:1 g; o gi) )
Optimistic AdaGrad in MinMax Probelm:
Algorithm 2 Optimistic AdaGrad (OAdagrad)

1: Input: zop = xg =0, Hy = 61

2. fork=1,...,N do

30z =Xp_1 — nH, 81

4 Xp = Xp_1 — 77Hk__11§k

5 Update ?g\o:k = [/g\o;k;_l ?g\k], Sk = ||/g\0:k,i||, 1=1,...,dand set H, = 01 + diag(sk_l)
6: end for




Optimistic AdaGraa

Optimistic AdaGrad in MinMax Probelm:

Algorithm 2 Optimistic AdaGrad (OAdagrad)

1: Input: zop = xg =0, Hy = 61

2. fork=1,...,N do

30 Zp = Xp—1 — 77Hk__11§k—1

4: X = Xgp—1 — 77Hk__11§k

5 Update go;k = [/g\O:k—l gk], Sk = ”/g\O:k,i”’ 1=1,...,dand set H, = 01 + diag(sk_l)
6: end for

Theorem 2. Suppose Assumption 1 and 2 hold. Suppose ||g1.xi|l2 < 0k® with0 < a < 1/2
foreveryr =1,...,dand every k = 1,...,N. Whenn < %, after running Algorithm 2 for N
iterations, we have

N
1 5 8D?5%(1 4+ d(N —1)*) 100 (c?/m + d (26°N* + G?))
N;E”T(Zk)” -1 < g + (6)

To make sure % Zszl E||T(zx) ||?le__11 < €2, the number of iterations is N = O (e_%).




Experiments

Wasserstein GAN with Gradient Penalty on CIFARI0

6.5 WGAN-GP on CIFAR10 with OSG W?AN-GP on CIFAR10 with AIternatIng_A_dam
6 PPy PP -
o " 5k o ! T e |
@ 5 n4f i s n5k .
§ 45 § //', § /
% . %3 9 / r %4 9 "
8 4 g |)i g
= = Ds=64 = o} w——Ds=64 =3k === Ds=64
3.5 )5 =128 |5 ./ = DS=128 e DS =128
bs=256 bs=256 l bs=256
3 - » . " 1 - n 2 - n -
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2

Number of Iterations «10° Number of Iterations «10° Number of Iterations %«10°



Experiments

Growth Rate Analysis of Cumulative Stochastic Gradient
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Experiments

Self-attention GAN on ImageNet

SA-GAN on ImageNet SA-GAN on ImageNet
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Novelty

1. formulate the problem of first-order stationary point of minmax optimization as a
variational inequality problem, and use stochastic approximation(SA) method to solve SVI.

2. provided a variant OSG for solving a class of nonconvex non-concave min-max problem and
establish O(¢~%) complexity for finding-first-order stationary point.

3.provided an adaptive variant of OSG called OAdagrad and reveal an improved adaptive
complexity O (e == , Where a characterizes the growth rate of the cumulative stochastic

gradient and 0 <a < 1/2.



Thank you!

Any questions?



