# Towards Better Understanding Of Adaptive Gradient Algorithms In Generative Adversarial Nets

Yuting Hu yhu54@buffalo.edu

# CONTENT

- 1. Background
- 2. Theoretical basics
- 3. OSG & OAGrad
- 4. Experiments
- 5. Novelty

# Recap: Generative Adversarial Network

**Def:** GAN is composed by a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game.



# Recap: Adaptive Gradient Descent

**Def:** Using observed gradients to help optimization process adapt to local or global smoothness and convexity and automatically learn the step size.

Adam -> Adaptive + Momentum

$$m_{t} = \beta_{1} \cdot m_{t-1} + (1 - \beta_{1}) \cdot g_{t}$$

$$\lim_{u \to \infty} \int_{w_{1}} \eta_{t} = \alpha \cdot m_{t} / \sqrt{2}$$

$$V_{t} = \beta_{2} * V_{t-1} + (1 - \beta_{2})g_{t}^{2}$$

$$\lim_{u \to \infty} \int_{w_{1}} \frac{1}{\sqrt{2}} \int_{w_{1}} \frac{1}{\sqrt{2}}$$



# MinMax Optimization

$$\min_{\mathbf{u}\in\mathcal{U}}\max_{\mathbf{v}\in\mathcal{V}}F(\mathbf{u},\mathbf{v}):=\mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{D}}\left[f(\mathbf{u},\mathbf{v};\boldsymbol{\xi})\right]$$

where  $\mathcal{U}, \mathcal{V}$  are closed and convex sets,  $F(\mathbf{u}, \mathbf{v})$  is possibly non-convex in  $\mathbf{u}$  and non-concave in  $\mathbf{v}$ .

*Idea Goal:* find a saddle point  $(\boldsymbol{u}_*, \boldsymbol{v}_*) \rightarrow F(\boldsymbol{u}_*, \boldsymbol{v}) \leq F(\boldsymbol{u}_*, \boldsymbol{v}_*) \leq F(\boldsymbol{u}, \boldsymbol{v}_*)$  (*NP Hard*)

*Final Goal:* find the first-order stationary point  $\rightarrow \nabla_{\boldsymbol{u}} F(\boldsymbol{u}, \boldsymbol{v}) = 0, \nabla_{\boldsymbol{v}} F(\boldsymbol{u}, \boldsymbol{v}) = 0$  (*Necessary Cond*)

Def:  $x = (\boldsymbol{u}, \boldsymbol{v}), T(x; \xi) = [\nabla_{\boldsymbol{u}} F(\boldsymbol{u}, \boldsymbol{v}; \xi), -\nabla_{\boldsymbol{v}} F(\boldsymbol{u}, \boldsymbol{v}; \xi)]^T$  (min min)

# MinMax Optimization & SVI/MVI

*Def:*  $x = (\boldsymbol{u}, \boldsymbol{v}), T(x; \xi) = [\nabla_{\boldsymbol{u}} F(\boldsymbol{u}, \boldsymbol{v}; \xi), -\nabla_{\boldsymbol{v}} F(\boldsymbol{u}, \boldsymbol{v}; \xi)]^T$ *Goal:* solve  $||T(x; \xi)| \leq \varepsilon$ *Tool:* variational inequality SVI/MVI

SVI: Stampacchia Variational Inequalityinequality find  $x_*$  such that  $\langle T(x_*), x -_* \rangle \ge 0$  for  $\forall x \in X$ MVI: Minty Variational Inequalityinequality find  $x_*$  such that  $\langle T(x), x - x_* \rangle \ge 0$  for  $\forall x \in X$ 

**Note:**  $\varepsilon$ -first-order stationary point means  $||T(x;\xi)|| \le \varepsilon$ .

# MinMax Optimization & SVI/MVI

**Definition 1** (Monotonicity). An operator T is monotone if  $\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge 0$  for  $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$ . An operator T is pseudo-monotone if  $\langle T(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge 0 \Rightarrow \langle T(\mathbf{y}), \mathbf{y} - \mathbf{x} \rangle \ge 0$  for  $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$ . An operator T is  $\gamma$ -strongly-monotone if  $\langle T(\mathbf{x}) - T(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{\gamma}{2} ||\mathbf{x} - \mathbf{y}||^2$  for  $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$ .

**Strong-monotonicity => monotonicity => pseudo-monotonicity** 

Conslusion: 1. SVI has a solution, MVI must has a resolution.

2. When F is convex in u and concave in v, T is monotone, the SVI solution is our target; When F is non-convex in u and non-concave in v, If assuming T is Lipschitz continuous, our target is a subset of SVI solution;

#### MinMax Optimization & SVI/MVI

How to solve SVI?

**Stochastic Approximation(SA)** 

$$x^{k+1} = \Pi[x^k - \alpha_k F(\xi^k, x^k)],$$

where  $\Pi$  is the Euclidean projection onto X,  $\{\xi^k\}$  is a sample of  $\xi$  and  $\{\alpha_k\}$  is a sequence of positive steps. In [18], the almost sure (a.s.) convergence is proved assuming *L*-Lipschitz continuity of *T*, strong monotonicity or strict monotonicity of *T*, stepsizes satisfying  $\sum_k \alpha_k = \infty$ ,  $\sum_k \alpha_k^2 < \infty$  (with  $0 < \alpha_k < 2\rho/L^2$ , assuming that *T* is  $\rho$ -strongly monotone), and an unbiased oracle with uniform variance, i.e., there exists  $\sigma > 0$  such that for all  $x \in X$ ,

$$z^{k} = \Pi \left[ x^{k} - \frac{\alpha_{k}}{N_{k}} \sum_{j=1}^{N_{k}} F(\xi_{j}^{k}, x^{k}) \right]$$
$$x^{k+1} = \Pi \left[ x^{k} - \frac{\alpha_{k}}{N_{k}} \sum_{j=1}^{N_{k}} F(\eta_{j}^{k}, z^{k}) \right]$$

Ref: Iusem, Alfredo N., et al. "Extragradient method with variance reduction for stochastic variational inequalities." SIAM Journal on Optimization 27.2 (2017): 686-724.

# Optimistic Stochastic Gradient

Algorithm 1 Optimistic Stochastic Gradient (OSG)

1: Input:  $\mathbf{z}_0 = \mathbf{x}_0 = 0$ 2: for k = 1, ..., N do 3:  $\mathbf{z}_k = \prod_{\mathcal{X}} \left[ \mathbf{x}_{k-1} - \eta \cdot \frac{1}{m_{k-1}} \sum_{i=1}^{m_{k-1}} T(\mathbf{z}_{k-1}; \xi_{k-1}^i) \right]$ 4:  $\mathbf{x}_k = \prod_{\mathcal{X}} \left[ \mathbf{x}_{k-1} - \eta \cdot \frac{1}{m_k} \sum_{i=1}^{m_k} T(\mathbf{z}_k; \xi_k^i) \right]$ 5: end for Define  $\hat{\mathbf{g}}_k = \frac{1}{m_k} \sum_{i=1}^{m_k} T(\mathbf{z}_k; \xi_k^i)$ , then the update rule of Algorithm 1 becomes

$$\mathbf{z}_k = \mathbf{x}_{k-1} - \eta \hat{\mathbf{g}}_{k-1}$$

and

•

$$\mathbf{x}_k = \mathbf{x}_{k-1} - \eta \hat{\mathbf{g}}_k.$$

These two equalities together imply that

$$\mathbf{z}_{k+1} = \mathbf{x}_k - \eta \hat{\mathbf{g}}_k = \mathbf{x}_{k-1} - 2\eta \hat{\mathbf{g}}_k = \mathbf{z}_k + \eta \hat{\mathbf{g}}_{k-1} - 2\eta \hat{\mathbf{g}}_k,$$
$$\mathbf{z}_{k+1} = \mathbf{z}_k - 2\eta \cdot \frac{1}{m_{k-1}} \sum_{i=1}^{m_k} T(\mathbf{z}_k; \xi_k^i) + \eta \cdot \frac{1}{m_{k-1}} \sum_{i=1}^{m_{k-1}} T(\mathbf{z}_{k-1}; \xi_{k-1}^i)$$

fixed gradient at step k, k-1

**Theorem 1.** Suppose that Assumption 1 holds. Let  $r_{\alpha}(\mathbf{z}_k) = \|\mathbf{z}_k - \Pi_{\mathcal{X}}(\mathbf{z}_k - \alpha T(\mathbf{z}_k))\|$ . Let  $\eta \leq 1/9L$  and run Algorithm 1 for N iterations. Then we have

$$\frac{1}{N}\sum_{k=1}^{N} \mathbb{E}\left[r_{\eta}^{2}(\mathbf{z}_{k})\right] \leq \frac{8\|\mathbf{x}_{0} - \mathbf{x}_{*}\|^{2}}{N} + \frac{100\eta^{2}}{N}\sum_{k=0}^{N}\frac{\sigma^{2}}{m_{k}}$$

**Corollary 1.** Consider the unconstrained case where  $\mathcal{X} = \mathbb{R}^d$ . Let  $\eta \leq 1/9L$ , and we have

$$\frac{1}{N}\sum_{k=1}^{N} \mathbb{E}\|T(\mathbf{z}_{k})\|_{2}^{2} \leq \frac{8\|\mathbf{x}_{0}-\mathbf{x}_{*}\|^{2}}{\eta^{2}N} + \frac{100}{N}\sum_{k=0}^{N}\frac{\sigma^{2}}{m_{k}},$$

#### Optimistic Stochastic Gradient

**Corollary 1.** Consider the unconstrained case where  $\mathcal{X} = \mathbb{R}^d$ . Let  $\eta \leq 1/9L$ , and we have

$$\frac{1}{N}\sum_{k=1}^{N} \mathbb{E}\|T(\mathbf{z}_{k})\|_{2}^{2} \leq \frac{8\|\mathbf{x}_{0}-\mathbf{x}_{*}\|^{2}}{\eta^{2}N} + \frac{100}{N}\sum_{k=0}^{N}\frac{\sigma^{2}}{m_{k}},$$

#### Conclusion

- (Increasing Minibatch Size) Let  $\eta = \frac{1}{9L}$ ,  $m_k = k + 1$ . To guarantee  $\frac{1}{N} \sum_{k=1}^{N} \mathbb{E} \|T(\mathbf{z}_k)\|_2^2 \leq \epsilon^2$ , the total number of iterations is  $N = \widetilde{O}(\epsilon^{-2})$ , and the total complexity is  $\sum_{k=1}^{N} m_k = \widetilde{O}(\epsilon^{-4})$ , where  $\widetilde{O}(\cdot)$  hides a logarithmic factor of  $\epsilon$ .
- (Constant Minibatch Size) Let  $\eta = \frac{1}{9L}$ ,  $m_k = 1/\epsilon^2$ . To guarantee  $\frac{1}{N} \sum_{k=1}^N \mathbb{E} ||T(\mathbf{z}_k)||_2^2 \le \epsilon^2$ , the total number of iterations is  $N = O(\epsilon^{-2})$ , and the total complexity is  $\sum_{k=0}^N m_k = O(\epsilon^{-4})$ .

# Optimistic AdaGrad

**Recap** AdaGrad in Minimization Probelm:

$$\min_{\mathbf{w}\in\mathbb{R}^d} F(\mathbf{w}) = \mathbb{E}_{\zeta\sim\mathcal{P}} f(\mathbf{w};\zeta) \qquad \mathbf{w}_{t+1} = \mathbf{w}_t - \eta H_t^{-1} \hat{\mathbf{g}}_t$$
  
where  $\eta > 0$ ,  $\hat{\mathbf{g}}_t = \nabla f(\mathbf{w}_t;\zeta_t)$ ,  $H_t = \text{diag}\left(\left(\sum_{i=1}^t \hat{\mathbf{g}}_i \circ \hat{\mathbf{g}}_i\right)^{\frac{1}{2}}\right)$ 

#### **Optimistic AdaGrad** in MinMax Probelm:

Algorithm 2 Optimistic AdaGrad (OAdagrad)

1: Input:  $\mathbf{z}_0 = \mathbf{x}_0 = 0, H_0 = \delta I$ 2: for k = 1, ..., N do 3:  $\mathbf{z}_k = \mathbf{x}_{k-1} - \eta H_{k-1}^{-1} \widehat{\mathbf{g}}_{k-1}$ 4:  $\mathbf{x}_k = \mathbf{x}_{k-1} - \eta H_{k-1}^{-1} \widehat{\mathbf{g}}_k$ 5: Update  $\widehat{\mathbf{g}}_{0:k} = [\widehat{\mathbf{g}}_{0:k-1} \ \widehat{\mathbf{g}}_k], s_{k,i} = \|\widehat{\mathbf{g}}_{0:k,i}\|, i = 1, ..., d$  and set  $H_k = \delta I + \operatorname{diag}(s_{k-1})$ 6: end for

# **Optimistic AdaGrad**

То

**Optimistic AdaGrad** in MinMax Probelm:

Algorithm 2 Optimistic AdaGrad (OAdagrad)

1: Input:  $\mathbf{z}_0 = \mathbf{x}_0 = 0, H_0 = \delta I$ 2: for k = 1, ..., N do 3:  $\mathbf{z}_k = \mathbf{x}_{k-1} - \eta H_{k-1}^{-1} \widehat{\mathbf{g}}_{k-1}$ 4:  $\mathbf{x}_k = \mathbf{x}_{k-1} - \eta H_{k-1}^{-1} \widehat{\mathbf{g}}_k$ 5: Update  $\widehat{\mathbf{g}}_{0:k} = [\widehat{\mathbf{g}}_{0:k-1} \ \widehat{\mathbf{g}}_k], s_{k,i} = \|\widehat{\mathbf{g}}_{0:k,i}\|, i = 1, ..., d \text{ and set } H_k = \delta I + \operatorname{diag}(s_{k-1})$ 6: end for

**Theorem 2.** Suppose Assumption 1 and 2 hold. Suppose  $\|\widehat{\mathbf{g}}_{1:k,i}\|_2 \leq \delta k^{\alpha}$  with  $0 \leq \alpha \leq 1/2$  for every  $i = 1, \ldots, d$  and every  $k = 1, \ldots, N$ . When  $\eta \leq \frac{\delta}{9L}$ , after running Algorithm 2 for N iterations, we have

$$\frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\|T(\mathbf{z}_{k})\|_{H^{-1}_{k-1}}^{2} \leq \frac{8D^{2}\delta^{2}(1+d(N-1)^{\alpha})}{\eta^{2}N} + \frac{100\left(\sigma^{2}/m+d\left(2\delta^{2}N^{\alpha}+G^{2}\right)\right)}{N}.$$
(6)
make sure  $\frac{1}{N}\sum_{k=1}^{N}\mathbb{E}\|T(\mathbf{z}_{k})\|_{H^{-1}_{k-1}}^{2} \leq \epsilon^{2}$ , the number of iterations is  $N = O\left(\epsilon^{-\frac{2}{1-\alpha}}\right)$ .

#### Experiments

Wasserstein GAN with Gradient Penalty on CIFAR10



#### Experiments

Growth Rate Analysis of Cumulative Stochastic Gradient



### Experiments

Self-attention GAN on ImageNet



# Novelty

1. formulate the problem of first-order stationary point of minmax optimization as a variational inequality problem, and use stochastic approximation(SA) method to solve SVI.

2. provided a variant OSG for solving a class of nonconvex non-concave min-max problem and establish  $O(\varepsilon^{-4})$  complexity for finding-first-order stationary point.

3.provided an adaptive variant of OSG called OAdagrad and reveal an improved adaptive complexity  $O\left(\epsilon^{-\frac{2}{1-\alpha}}\right)$ , where  $\alpha$  characterizes the growth rate of the cumulative stochastic gradient and  $0 \le \alpha \le 1/2$ .

Thank you!

Any questions?