DIFFUSION
MODELS

CSE 705 SEMINAR (FALL 2024) DAY 2

Presented By:
Team Sushi (Vamshi Krishna Kyatham,

Xlaofeng Chen, Rahul Dasari)

I]’_'aDp tm thmpt r Scie
and Engineering

School of Engineering and Applied Sciences

School of Engineering and Applied Sciences

--

LET’S CONTINUE WHERE WE
LEFT FROM..

MATH BEHIND DDPM

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

[et’s fix some Notations

For Example: The Original Image at timestep O is:

)

/

timestep

The image after iteratively adding noise in the forward
process at timestep 42 is:

The final image after following isotropic Gaussian
Distribution:

Initially in the base paper
T was set to 1000

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Now let’s define some functions

Forward Process: q(x;| X+.¢) defines the forward process.

Timestep t - 1 corresponds to image with less noise and timestep t corresponds to image with more noise.

small t = small noise

big t = big noise

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Now let’s define some functions

Reverse Process: p(x.q | X;) defines the reverse process.

Diffusion
Model

Timestep t - 1 corresponds to image with less noise and timestep t corresponds to image with more noise.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Let’s dive into the forward process

normal distribution \/ \/ mean

l(l)— (77‘ 5{1f 1+)’f])

\ output variance j

Beta refers to the schedule we discussed on the previous week. It varies between the range 0 to 1 and
ensures that the data is being scaled so that the variance doesn'’t explode.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Let’s look into the Schedule

Linear Schedule: The defined start and end values of this schedule are 0.0001 and 0.02.

beta__ .= 0.0001 beta_, = 0.02

q(xt|ri—1) = N(2t, /1 = Bxi—1, Bel)

We can see from the graphs that we more and more scale down the image which acts as the counterpart for
increasing the variance over time and keeping the variance in bound without exploding.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Cool, we now understand how to apply the forward step using the formula

This is for one time step. But we need to do this iteratively for 1000 timesteps which needs to repeat the
formula 1000 times.

But there is an easier way to do it in one single step.

Let's define some Notations for that: oy = 1 — Bt

Cumulative Product of Alpha’s till ‘t’

c.g. t =8 ag=Q] -2 Q3 -Q4-Q5- 05 Q7 QY

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Let’s rewrite the forward process equation q(X; | Xt.1)

a(xt|ri—1) = N(zt, V1 — Bixg—1, Bl
= /1 — Brxy_1 + /e
at Ti—1+ 1 —ate

Reparameterization Trick:

- N
N(p,09)=pn+o-¢

Epsilon follows a Normal Distribution

= /a1 22+ /1 —apap_1 €
= /Ot 14 -9 .1'/_;?,+l — Yt 19 €
= Sy _1...a 00 ro+/1 — oy ... €

The final form of forward
process can be written as:

(/ll.l'/l.l‘“:l : ,"\,"’(.1'/: voraxo. (1l —ay)l)

You can see here that you can go from xg to x; directly. Now you can understand why we used cumulative
alphas. We can simplify the formula. 9

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Now let’s look into the reverse process:

va

])(;';Iiif[__l ‘."IL‘/,) = ./\/(.1', _1: Mplxg, T). g(,(e, b))

We would need two neural networks to parameterize the Normal Distribution which we can sample from to get
X1

we don't need a neural
network for that

P(xt—1|Tt) = N(wi—1; pgle.t), Syl 1))
/

we only need
to predict this

10

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

In order to have an easy time, we will start by looking at the loss function. It is a simple negative log likelihood.

— log(pp(xp))

We know that p(xg) isn’t nicely computable as it depends on all the time steps coming before xq upto Xt
Keeping track of all these is not possible

One trick we can use to solve this is Variational Lower Bound

9x) < fx)

|

max g(x)

|

f(x) will increase

11

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

So we can subtract KL Divergence which is a measure how similar two distributions are which is always +ve.

p(z)

dx
q(z)

— log(pe(zo)) < —log(pe(wo)) + Drr(q(z1.7|70)||Po(21:7|70)) D plla) = /Ip(m)log

We are adding because we need to minimize the loss function. But this is still not computable as well.

— log(pe(wo)) < —log(pe(wo)) + Drr(q(z1:7|z0)||po(21:7|70))

Dy (q(z1.7|20)||po(21:7|70))

He) Sy

(/(-"' | :'/',|,ffi“)
Pyl ;'/‘\-"H)

log(

Apply Bayesian rule to the lower term. 12

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

q(xy.7|20)
1()'(/(' /'(1(-" | :’/"-"l))

1

po(xo.1) ~ Po(xo, 21.7) ~ Po(xo|T1.7)PY(21.7)

pelxp) po(xo) polxp)

Axprlro)y o

q(ry.7|20))
Po\To.1)

— [og/ + log(pp(xp))

Pplr()

— log(pe(xg)) < —log(pe(zg)) + log(q(2y:7]20)) + log(py(xp))

polxy.T)

We use joint probability in some
places

We get rid of that annoying
quantity.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Great, Now this is our variational lower bound which we can minimize.

(s mllaen)s The term at the top of second
/ - qlxy.7|T0)
— log(pe(xo)) < log! /,ml.,.l(l./.) term is the forward process

, The cumulative product is taken out

g(w which convert to the summation.
p(xr) TTL, po(ze—i|ze)

Later we will divide the summation to

) two parts. One at time step 1 and rest

In another term. We will see why we

did that.

H/ 1(1 1[|11 1)

; 11)0(1/ 1|’/

= - log(p(xr)) + log(

11|11 1)
= - log(p(x7) E log()
1)()(11 1|11 /

I—l

x| (x|
= - log(p(xy) %Z/()(/ l| =1) —~/()((¢)

1'() Ty 1‘1/ /'u '()’11

14

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

We will apply Bayes Rule to the
top term of second equation. All
these terms has very high
variance since we don’t know
where we started from.

q(xt—1]7t,)

AR

_ Nl o) This is possible when it is
e — Qe—1]xe) glae) v :
q(xt|re—1) = q(x7_1) extra conditioned with xg
| | This formula also has a
N ET T EIE I C'osed form solution which
q(zi—1]zp) we will talk later.

15

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

If we didn’t remove the last term, it would have been mess.

Let’s continue. log(p(x

(1 Ti—1|Ty,) a Ty q(xq|zg)

. H- Log(
Po(- 1|1/ 9 (Tg—1|2 [)0(-1'()\-1'1)

)

‘ r/lj./'2|.l'(,) 1/(./‘;;‘141’(,] q(xylxg) “

Ty |zo) q(as|g) g(as|ag)’

q(xp |-1'0)

o(21]0)

log(

Z log(

=

o1 fora0)glarl)

q(x |-1'())

pol, 1|11

g(xi—1]ag

>) + log(

[)()(-1'()|~"1)

q(z1|zg) =

q(wol)) g(x))
q(p)

q(woley,zg) gl |zg)
q(xo|zo)

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

log(

(1(-1"1‘|~1'0))
(](.'I"l |.'I"('))

+ log(

‘1(:-"1 ’-l'n)

[)0(-1'() |-1'1)

)

£ q(xr|zo)
l()‘%(p(xp))

log((I(:-"'l"-"t))

(.1‘,_1|.1',. o)

"
cq(xp|xo) q
— 1();;‘(%) +Z/Q(/(

{—9 11/)(-1'/—1|-1'/)

— log(pe(xo|z1))

) — log(pe(xo|z1))

-
= Dgr ('(1(-"’1"-1'()) Hl)(-"‘l‘)) 53 Z Dgp ((1(‘-1'/—1|-"/- Zo) H[)()(’-I'/—Ly-l't)') - 10?’5(1’0(-"0!-"1)
t=2

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

-
Dy (q(xr|xo) || p(2) - Z Dy r(q(xi—1|ze, 20) || po(Ti-1]21)) — log(pe(xo|z1)

t=2

We can ignore the first term as it indicates forward process and g has no learnable parameters.The KL
Dlvergence will be small because forward process converges to Normal Distribution and difference is
small with a random sampled noise.We can use the third term for scaling but we can ignore that for now.

-
Z Dy r(q(zi—1|ze, 20) || po(2i-1|71)) — lOg(po(x0|1)

t=2

— d’\"r(.l'/_l: /7[(/([U) ;[[) — J'\'/’('.l'/, 1 //()(I[,]))[|

This is the closed form solution | was referring to. The derivation is similar as explained in the forward
process and the final form would look like "

\,"} v(l—a

. [Xt—17t o, 2 (1 2
Xy > J, — :
| y oy g ¢ 18

i (Xe. Xo)

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Let’s focus on mean as we know variance is constant.

From forward process, we know the value of x;

~ v Va(l—a—1)
/II(XI-X(),) = ——"X; +

1—ay

Iy = (3/ ZTo - \/ = (3[€

iy =

We can see at the end that we are
subtracting random scaled noise from
Xt 19

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

T
Z Dk r(q(xi—1|xe, 20) || po(2i—1]|21)) — log(pe(xo|z1)

= N(24—1; (4, 20), B3,1) = N(xzp_1; pp(ay, t), BI)

Now this is what our Neural Network needs to predict and the authors decided to use simple MSE

20

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

_ -(17.[~ | fie (20, 20) — pro(24, f:)||2 Substituting the mean we get

21

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Once we substitute mean and simplify we get,

The authors found that we can ignore the first scaling term for further simplification as it doesn’t effect the
value much.

So Finally, we get

Finally, we can conclude that predicting the noise of the image is all what we need from the U-Net.

22

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

From the finding of the noise we can get back our image

(o \ — 1 (. _ Dt
|7 ///;(.I/./) = o (.I, Jia; €nl

Ut, /) S()(I[/))

Applylng Reparameterization Trick:

N L, o? [+ 0 -

Epsilon is noise sampled from random Normal
23

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Some Improvement we can think of

e We can improve the schedule. We saw that Linear Schedule de-structures the image at early
timesteps and some steps are redundant at last. We can use Cosine Schedule for improving the

adding of the noise segment.

linear ‘ gj e g

e \We saw that we fixed the variance using the schedule. We can learn the variance as well using an
another Neural Network.

e \We can explore on the Architectures following the similar principles. Why can’t we use the latent
space technique of VAE’s here?

Let’s see the third step in detail.

24

University at Buffalo
G | Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

--

LATENT DIFFUSION MODEL

Paper Link:
High-Resolution Image Synthesis
with Latent Diffusion Models

https://arxiv.org/pdf/2112.10752
https://arxiv.org/pdf/2112.10752

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Denosing Diffusion Model

Fixed forward diffusion process

Noise

Generative reverse denoising process

Sequential sampling process
lterative refinement
Operate directly in pixel space

26

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

LDM helps with Limited Computationally Resource

Latent Space

Complexity reduction (focus on the important ,semantic bits of data)

Detail preservation (train in low-dimensional, computationally much more efficient space)

Cross-attention layer

Generator for general conditioning inputs in a convolutional manner

27

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Perceptual compression and Semantic compression

Distortion (RMSE)

80

60

40

20

Semantic Compression

— Generative Model:
Latent Diffusion Model (LDM)

Perceptual Compression

— Autoencoder+GAN

0 0.5 .0

Rate (bits/dim)

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

4 \? ‘- Latent Space Conditioning|
£ ~ Diffusion Process — emantiq
/‘ Ma
P - Denoising U-Net €p Text
Repres
entations

D
=

.]
@xel Spac9 y
’
Q
KV E <-T
U

denoising step crossattention switch skip connection concat

29

University at Buffalo

G5 Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Train Autoencoder in Adversarial Manner

L autoencoder = IgllII)l mfx (Lrec(x: D(S(ZU))) — Ly (D(g(m))) + 10g D¢ (37) + Lreg (LL‘; 87 D))

Lrec(z,D(€(z))) Reconstruction Loss

L.w(D(E(z))) Adversarial Loss

Log-likelihood of the discriminator Correctly classifying the real data
log D ()

Regularization term

Lreg(m; £, D)) 30

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Cross Attention Layer
| t

-” internal UNet

’ Latent Space siti _e-" .
Dif Process Cmi:\g‘ i representation,
I £ usion | B S
2 Denoising U-Net ¢y e ’:1- Text p 4 \1- (optionally more)
2 5 b

v)
- I QR @ llae|e Feed
i <€D l' kv kv 1kv kv E

z [er-y t t TL t " Transformer L

Pixel Space < a “\
; T Encoder Mt-Heed Cross-
. ' D t'dh . A T : FFeedd Attention Attention
denoising step crossatiention switc skip connec bo:\ conca orwar ! ’
.
\ Nx f"' Add & Norm l p—
‘. Maaod Se'f‘
X Muiti-Head Multi-Head
\ Attention Attention Attention
N o v \& —
*\ Positional
Encoding
Input Output
] Embedding Embedding
“ Conditioning, internal UNet
N\ e.g. text prompt representation,
5\
: e.g. 8x8x64 31

t

University at Buffalo

G5 Department of Computer Science

and Englneerlng
School of Engineering and Applied Scie

Conditioning mechanism in LDM

_ QK™ :
Attention(Q, K,V) = softmax(v) .V, with

Q=W ¢i(z), K=Wg -1(y), V=W 1(y).

Here,,(2,)denotes a (flattened) intermediate representation of the UNet implementing

32

University at Buffalo
G5 Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Diffusion models and Latent diffusion model

Diffusion Model

Lpm = *:a:,eNN(O,l),t [‘lé - ee(wtat)”%] 9 (1)

Latent Diffusion Model

Lrpm = Eg(z),e~nn(0,1),t [||€ — EH(Ztat)”%] . (@)

Liou = Egyyemnon, le=colz t, o@)l3], @) =

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Latent diffusion model Downsampling Experiments

500 FID vs. training progress Inception Score vs. training progress
- |DM-1 40
~— LDM-2 v
— — DM-4 S 4,
—— LDM-8 o
o c
™ ~— LDM-16 o
u- 100 S 20
— — |DM-32 8- ot
— O
= - —
50 10
0.0 0.5 1.0 2.0 0.0 0.5 1.0 1.5 2.0
train step le6 train step le6

34

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Latent diffusion model Downsampling Experiments
CelebA-HQ ImageNet

FID vs sample throughput FID vs sample throughput

- —-—

3.5 — LDM-1
LDM-2
S _— —— LDM-4
= —— LDM-8
2 —— LDM-16
2.5 —— LDM-32
2.0
0 20 40 60 40 60
throughput [samples / s] throughput [samples / s]

Figure 7. Comparing LDMs with varying compression on the CelebA-HQ (left) and ImageNet (right) datasets. Different
markers indicate {10, 20, 50, 100, 200} sampling steps using DDIM, from right to left along each line. The dashed line shows
the FID scores for 200 steps, indicating the strong performance of LDM- {4-8}. FID scores assessed on 5000 samples. All
models were trained for 500k (CelebA) / 2M (ImageNet) steps on an A100

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Qualitative Results On Each Dataset

CelebAHQ LSUN-Churches LSUN-Beds

Figure 4. Samples from LDMs trained on CelebAHQ [39], FFHQ [4 1], LSUN-Churches [102], LSUN-Bedrooms [!02] and class-
conditional ImageNet [12], each with a resolution of 256 x 256. Best viewed when zoomed in. For more samples cf. the supplement.

36

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Unconditional Image generation with LDM

CelebA-HQ 256 x 256 FFHQ 256 x 256
Method FID] Prec.t Recall?t Method FID | Prec. T Recall 1
DC-VAE [0] 15.8 - - ImageBART [] 9.57 - -
VQGAN+T. [7] (k=400) 10.2 - - U-Net GAN (+aug) [''] 109 (7.6) - -
PGGAN [7] 8.0 - - UDM [] 5.54 - -
LSGM [V] 7.22 - - StyleGAN [] 4.16 0.71 0.46
UDM [“7] 7.16 - - ProjectedGAN [7] 3.08 0.65 0.46
LDM-4 (ours, 500-sT) 5.11 0.72 0.49 LDM-4 (ours, 200-s) 4.98 0.73 0.50
LSUN-Churches 256 x 256 LSUN-Bedrooms 256 X 256
Method FID] Prec.t Recallt Method FID] Prec.T Recallt
DDPM [] 7.89 - - ImageBART [']) | - -
ImageBART [] .32 - - DDPM [] 49 - -
PGGAN ["] 6.42 - - UDM [] 4.57 - -
StyleGAN [] 4.21 - - StyleGAN [+] 2.3 0.59 0.48
StyleGAN2 [] 3.86 - - ADM [7] 1.90 0.66 0.51
ProjectedGAN [7] 1.59 0.61 0.44 ProjectedGAN [7] 1.52 0.61 0.34
LDM-8* (ours, 200-s) 4.02 0.64 0.52 LDM-4 (ours, 200-s) 295 0.66 0.48
Table 1. Evaluation metrics for unconditional image synthesis.
CelebA-HQ results reproduced from [, 07,], FFHQ from
[42,43]. T: N-s refers to N sampling steps with the DDIM [/]
sampler. *: trained in KL-regularized latent space. Additional re- 37

sults can be found in the supplementary.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Text-to-Image Conditioning

Text-to-Image Synthesis on LAION. 1.45B Model.

’A street sign that reads ’A zombie in the "An image of an animal "An illustration of a slightly ’A painting of a "A watercolor painting of a ’A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

B

/_'ﬁ
LATENT
DIFFUSION

Generative
Models!

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [7%] database. Samples generated with 200 DDIM steps and 7 = 1.0. We use unconditional guidance [3”] with s = 10.0.

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Image generation with Latent diffusion model

Text-Conditional Image Synthesis

Method FID | IST Nparams

CogView' [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 75M

GLIDE* [57] 12.24 - 6B 277 DDIM steps,c.f.g. [']s =3
Make-A-Scene* [0] 11.84 - 4B c.f.g for AR models [""] s =5
LDM-KL-8 23.31 20.03+033 1.45B 250 DDIM steps
LDM-KL-8-G* 12.63 30.29-+0.42 1.45B 250 DDIM steps, c.f.g.[''] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the

256 x 256-sized MS-COCO [°] dataset: with 250 DDIM [++]

steps our model is on par with the most recent diffusion [*"] and

autoregressive [/©] methods despite using significantly less pa- 39
rameters. |/*:Numbers from [0V)/ [70]

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Layout to Image Synthesis

layout-to-image synthesis on the COCO dataset

N

AL

#

. . L Figure 9. More samples from our best model for layout-to-image
Figure 8. Layout-to-image synthesis with an LDM on COCO [4], synthesis, LDM-4, which was trained on the Open Images dataset

see Sec. 4.3.1. Quantitative evaluation in the supplement D.3. and fine tuned on the COCO dataset. Samples generated with 100
DDIM steps and n = 0. Layouts are from the COCO validation4ddt.

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Convolutional Sampling Beyond 256 >

Figure 9. A LDM trained on 256 resolution can generalize to
larger resolution (here: 512 x 1024) for spatially conditioned tasks
such as semantic synthesis of landscape images. See Sec. 4.3.2.

41

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Super-Resolution with Latent Diffusion

bicubic

Figure 10. ImageNet 64—256 super-resolution on ImageNet-Val.
LDM-SR has advantages at rendering realistic textures but SR3
can synthesize more coherent fine structures. See appendix for
additional samples and cropouts. SR3 results from [/].

42

University at Buffalo

G5 Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Super-Resolution with Latent Diffusion

SR on ImageNet Inpainting on Places
User Study Pixel-DM (f1) LDM-4 LAMA [**] LDM-4
Task 1: Preference vs GT 1 16.0% 30.4% 13.6% 21.0%
Task 2: Preference Score 1 29.4% 70.6 % 31.9% 68.1%

Table 4. Task 1: Subjects were shown ground truth and generated
image and asked for preference. Task 2: Subjects had to decide
between two generated images. More details in E.3.6

43

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Super-Resolution with Latent Diffusion

train throughput sampling throughput! train+val FID @2k

Model (reg.-type) samples/sec. @256 @512 hours/epoch epoch 6
LDM-1 (no first stage) 0.11 0.26 0.07 20.66 24.74
LDM-4 (KL, w/ attn) 0.32 0.97 0.34 7.66 15.21
LDM-4 (VQ, w/ attn) 0.33 0.97 0.34 7.04 14.99
LDM-4 (VQ, w/o attn) 0.35 0.99 0.36 6.66 15.95

Table 6. Assessing inpainting efficiency. ': Deviations from Fig. 7
due to varying GPU settings/batch sizes cf. the supplement.

44

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

input result

Inpainting with Latent Diffusion

40-50% masked All samples
Method FID | LPIPS| FIDJ| LPIPS |

LDM-4 (ours, big, w/ ft) 9.39 0.246+0.042 1.50 0.137+0.080
LDM-4 (ours, big, w/o ft) 12.89 0.257+ 0.047 240 0.142+ 0085

LDM-4 (ours, w/ attn) 11.87 0.257+ 0042 2.15 0.144+ 0.084
LDM-4 (ours, w/o attn) 12.60 0.259+ 0.041 2.37 0.145+ 0.084
LaMa [22]T 12.31 0.243+ 0.038 223 0.134+ 0.080
LaMa [~] 12.0 0.24 2.21 0.14
CoModGAN [107] 10.4 0.26 1.82 0.15
RegionWise [©] 21.3 0.27 4.75 0.15
DeepFill v2 [104] 22.1 0.28 5.20 0.16
EdgeConnect [~] 30.5 0.28 8.37 0.16

Table 7. Comparison of inpainting performance on 30k crops of
size 512 x 512 from test images of Places [| (/"]. The column 40-
50% reports metrics computed over hard examples where 40-50%
of the image region have to be inpainted. Trecomputed on our test
set, since the original test set used in [] was not available.

Figure 11. Qualitative results on object removal with our big, w/

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

U-Net Skip Connection

164 64
128 64 64 2
input
imape ol s output
ge | segmentation
tile ol S 3 &
| of @ A S A o
5| B B Sl 3 33
x x x
AN Off
N~ ©
0| g wv
¥ 106 16 I
256 128
= BB
AH B & ;l;l
COfl cO [e0]
AN N N
' 256 256 512 256 t
N ie e %[I?I'NFI =» conv 3x3, ReLU
o E K S o S
— o O 'H = copy and crop
¥ 512 se2 1024 512
M-~ — - § max pool 2x2
<t
8 ¥ iom $ & 8 4 up-conv 2x2
~ I »
- %_ S =» conv 1x1
™ N

46

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

PAPERS REFERRED

Score Based Models - https://arxiv.org/pdf/1907.05600v3

Denoising Diffusion Probabilistic Model - https://arxiv.org/pdf/2006.11239

For Math Derivation - https://lilianwengq.qgithub.io/posts/2021-07-11-diffusion-models/, Outlier
Some improvements done by OpenAl - https://arxiv.org/pdf/2102.09672

Latent Diffusion Models - https://arxiv.org/pdf/2112.10752

47

https://arxiv.org/pdf/1907.05600v3
https://arxiv.org/pdf/2006.11239
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/pdf/2102.09672
https://arxiv.org/pdf/2112.10752

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

THANK YOU!

48

