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Generative Models

Generative models try to model the probability density function of the data and sample from it or directly
sample from the distribution.

Explicit models: (They model the distribution)

Autogressive models « Variational autoencoders

d

po(x) = [ [po(xi | x<i) po(x) = jP(Z)Po(X | z) dz

i=1

Implicit models: (They directly sample from the distribution)
e GANs

GAN - ‘
Random
Nnoi I N /

€ ~ p(e)

Generator
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What is Score?

Energy-based model: py(x) = %ﬁ . log py(x) = fy(x) — log Z(0)
(Stein) Score function:

sp(x) = Vxlogpe(x)

,—fo(x)
= Vxlog - Zs Score is essentially the field of the
= Vi loge 1) _ v log Z, probability density function
X ~ X —;)
- —vxfO(x)
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What is score

Probability density i.i.d. samples Score function
pdata(x) X1,X2," ", Xp SB(X) o~ Vx log pdata(x)
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Score Matching

Observation
sp(x) = Vi log py(x) is independent of the partition function Z(#).

Fisher divergence between p(x) and g(x):

1
DF(p. 4) = 5 Exwpll| Vxlog p(x) — Vxlog q(x)]]

1
= B paes [[| Vx 108 Paata(x) — 59(x)|13]

2
1 2
= 5 Exvpia [ Vx 108 ptata (x) = Vify(x) 3]
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Score Matching

%Exwpdata [(Vx log pdata(x) — Vi log pg(x))?] (Univariate case)

= % f Pdata(X)[(Vx log pdata(x) — Vx log PH(X))z]dx

= 1 [ pdata(X)(Vx log pdata (x))?dx +
- / pdata(x)vx log pdata(x)vx log P()(X)(IX

Recall Integration by parts: [ f'g = fg — | g'f.
- / pdata(x)vX log pdata(x)vx log PH(X)(IX
=—/ Pdata(x);\—vxpdata(x)vx log pg (x)dx

P(I.nt.)(x)
= —Ppdata(X) Vx log po (X)|22 _ o + | Pdata(X) V% log pg(x)dx
0

= [ Pdata(X)VZ log pg(x)dx
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Score Matching

Univariate score matching
3 Expas [(Vx 108 Paata(x) — Vi log py(x))?]
— % / pdata(x)(vx |Og pdata(x))2dx &
— | Pdata(x) Vx 10g Pdata(X) Vx log pp(x)dx

/ pdata(x)(vx Iog pdata(x))z(-lx 5

o

CND ] =

—N

const. wrt 0
+’ pclata(x)vz |Og p,}(X>(lX
= Eore + V2 log ps(x)] + const.
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Score Matching for Multivariate case

E | + V< log py(x)] + const.

1
2

1
= Expins | 51V 108 po (113 + tr( V2 log po(x) )]

Ex~pases L[| Vx 108 Pdata(x) — Vi log pa(x)||3]

1 ~l
~ Z §||Vx log py(x;)||3 + tr(V2log P()(Xi))]
i=1

1l
== [SI9xfaxi)I13 + trace(VEfy(xi))
=1
The derivative of the gradient simplifies to the trace of the hessian of P(x)

10
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Score Matching

The objective is to maximise fisher divergence by using score matching.
+ Objective: Average Euclidean distance over the whole space.

1

§Ex~pdam[ |Vx 10g Paata(x) — 86(x) ”g]

(Fisher divergence)

« Score matching:

1
Expaa| 5 180113 + tr( Vaso(x) )]
2 N

Computing the hessian is expensive

11
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Denoising Score Matching

“ 1
i pia(x)  sBseslValogas (%) - sy(®)[]
1

x | = | @1kl - sl ax

@ (X[ x) | 2
=3 | 43 Vs logar (13

ﬁ - %) B qu(i)vi log ¢, (X)" 8p(%) dx

~ = const. — | ¢,(X)Vxlog g, (X)"sg(X) dx
X J 0

yet again we try to compute the loss
12
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Denoising Score Matching

- f 7, (X)Vzlog g, (%) 89(X) dx

o (%) —
_— — o x =
J . (Id(x)
r‘
= — | Vi, (X)"8p(x) dx

viQa (i)TSO (5() dx

= — | V([ Pana(an(x 1 %) ax) "s0(x) dx

- T
= | (Jp(latzm(x)viqa(i | X) dX) 39(5&) dx

. T
- [( f Panta ()0 (X | X) Vs 10g 4o (% | %) dx) ' 86(X) d%

P
= — [ [ Pasa(3)0 (% | %) Vi 10g 40 (% | %)7s0(5) dx 4%

13
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Denoising Score Matching

| ) )
5 B, IV 10g 45 (%) — 80(X) I5]

= const. — an(i)vi log ¢, (X)" 8(X) dX

= (3()IlSt. _Ex"’pdata(x)’i"’qﬂ (i|x) [Vi log q(f (i | X)TSQ (i)]

1 . ~ 2
=const. + éEx~pdata(x),,z~q,(i|x)[||30(X) — Vi log g, (X | x)|[3]
I

9 l("X‘I'.l;m..(X).’\(“I«Y(X‘X)lHvk ]“g (/(,(X ‘ X)Hj’

1 3 _
= Const. + & Bxnpgyia (0, %~a0 (1o [ 86(X) — Vi log g (X | x)||3] + const.

14
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Denoising Score Matching

Ipsar, (0) = By x5 I156(X) — Vi bog g (X|x) 13

Vs log ¢, (X|x) = Vxlog N(x,0° - T)
exp(—3(x —x)T - (6% - 1)1 (x — x))
vV (27)4|e? - 1

7 ~
Vx log

1 T 9 oy :
= Vi log exp( ‘)(X )" (- D7 (x X))

—

x log \" 27)° I|]

*()

1 L N ii—xi 2
Loss = —Z [H.So(xi) g 2] 15
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Denoising Score Matching

- 5 \ 1 N -
Perturbation ' 1 > o 2
distribution/kernel | =5EX~P<1w;(X),i~qa(iIX)[llse(x) — Vxlog qa(x | X)||2] + const
>, Sllas pdata(x) X ~ QU(i) 1 Z 2
Data Noise-perturbed = _EX~pd.,t-.,Z~N(0,I)|: ”89()( + az) =t —H ] + const.
distribution data distribution o oll2

This formulation avoids computing the hessian, hence its computationally
efficient

16
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Sampling from a score based model
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Data samples Scores New samples

{xh X9, axn} ~ pdata(x) SQ(X) ~ Vy logpdata(x)
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Sampling from a score based model

Langevin dynamics can produce samples from a probability density p(x) using only the score function
V« log p(x). Given a fixed step size ¢ > 0, and an initial value X, ~ 7(x) with 7 being a prior

distribution, the Langevin method recursively computes the following

% = %1+ 5 Vxlogp(Ri—1) + Vez  wherez, ~ N (0, ).

similar to gradient ascent, except that we add a
noise

18
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Challenges of score based Generative Modeling

Now we analyze more closely the idea of score-based generative modeling. We
argue that there are obstacles that prevent a naive application of this idea.

> Manifold hypothesis

> Low density regions

19
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The manifold hypothesis

The manifold hypothesis states that data in the real world tend to concentrate on low dimensional
manifolds embedded in a high dimensional space.

Under the manifold hypothesis, score-based generative models will face two key difficulties.

> First, since the score V log p(x) is a gradient taken in a higher dimensional space, it is
undefined when x is confined to a low dimensional manifold.

> Second, the score matching objective provides a consistent score estimator only when the
support of the data distribution is the whole space and will be inconsistent when the data reside

on a low-dimensional manifold.

20
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Low data density regions

The scarcity of data in low density regions can cause difficulties for both score estimation with score
matching and sampling with Langevin dynamics.

> |n regions of low data density, score matching may not have enough evidence to estimate score
functions accurately, due to the lack of data samples.

> When two modes of the data distribution are separated by low density regions, Langevin dynamics
will not be able to correctly recover the relative weights of these two modes in reasonable time, and

therefore might not converge to the true distribution.

21
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Noise Conditional Score Networks

Data density

Data scores
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Noise Conditional Score Networks

High data density region
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Noise Conditional Score Networks

1 & i X
=7 Z A(05) Expanenz~nN (0,1 [[| V108 4o, (X | X) — 86(X, 07)||3] + const.

|

1 2

L -

Z
S9(X + 0;2z,0;) + —
op)

L
A (0-7' ) Ex"’pdata,z"‘N(O’I) [
=1 2

-~
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Noise Conditional Score Networks

= z ||*
T Z O-’i2Ex"‘pdata,z~N(0’I) [ So (x + O'iZ, O-z) T — ]
L i=1 7ill2
1 & ‘
- Z Z Ex"’pdata,ZNN(O,I) ||0289(x + O'iZ, O.Z) + = g ]
) iil :
— 1Y Brpnnon| o+ 0:2,0) + 21
i=1 ]

25



University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Annealed Langevin Dynamics
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Next Up

Denoising Diffusion models. These models don’t use score matching, but
instead model the noising and denoising as a markov chain, where in we
gradually add noise to an image until it becomes pure noise and learn a neural

network that denoises the image.

27



versity at Buffalo
Depa rtmen tof Computer Science
and Engineering

School of Engineering and Applied Sciences

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

G5

DENOISING DIFFUSION
PROBABILISTIC MODEL
(DDPM)




University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Denoising Diffusion Probabilistic Model (DDPM)

General Idea:

The essential idea is to systematically and slowly destroy structure in a data distribution through an
iterative forward diffusion process. We then learn a reverse diffusion process that restores structure in
data, yielding a highly flexible and tractable generative model of the data.

In short, we apply a lot of noise to the image and then have some intelligence which learns something
out of it (a Neural Network) to remove the noise.

Now, the idea is if the Neural Network learns to remove the noise properly, we can start off with a
completely random noise and let the model remove the noise until we have a new image which could
occur from our training data.

29
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Understanding of DDPM

So as discussed in the previous slide, We have two main processes:

1. Forward Process: We start with the original image and step by step add more noise to the
image. If we repeat this for sufficient number of steps, the image will become pure noise.

How will be add the noise?

The paper uses Normal Distribution to sample the noise. The pure noise image will follow
the Normal Distribution.

30
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So, we can see that going from an image to noise is fairly very simple.

But wait, what about the reverse process where you go from just noise to an image? Here comes the
actual problem..

2. Reverse Process:

It involves a Neural Network learning to remove the noise from an image step by step. This way we can
give the Neural Network a random noisy image sampled from the Normal Distribution and let the model
gradually remove the noise step by step until we have a clear looking image.

Ok, so why are we going step by step and not generate an image from the noisy image instantly?

31
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Going from noisy image to a clear looking image instantly is NOT a tractable solution and can lead to
much worse outcomes. You need Neural Network to learn something.. Isn’t it?

Now the point goes to.. How does this Neural Network look like? What will be the input and output of this
neural network?

First of all, let’'s see what this Neural Network can predict.
The Neural Network can predict:

1. Mean of the noise at each time step
2. Predicting the original image directly
3. Predicting the noise in the image directly

We have already seen that predicting the original image is not a tractable solution. So we can eliminate
that.
What would you select?

32
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Well, both are mostly same. We just parameterize them differently. We will see this in further slides.
Most of the researchers chose third option i.e., Noise of the image and predict the noise directly.

Well, you all may be wondering why we are predicting the mean and not variance in the first option as the
Normal Distribution needs mean and variance.

33



University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

The authors of the paper decided to the fix the variance and thus there is no need to predict it since it
always readily available.l will show you all in the Math Derivation part what they fixed it to.

Just as an improvement...

Can we think of learning the variance too because it may lead to the improvements in the log likelihood
(loss of the Neural Network). We will see that later.

Note: We don’t employ same amount of noise at each time step in the forward process. How do we
regulate that?

Schedule - Scales the mean and the variance. This ensures that the variance doesn’t explode as we add
more and more noise.

This paper we are discussing employed Linear Schedule

34
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Using linear schedule, the transformation looks something like this

We will further discuss more about this and the scope of the improvement.

We are now clear what does the input and output of the Neural Network look like

Let’'s have a look at the Architecture.
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Architecture of DDPM

The Neural Network used for the reverse process looks like a U-Net Architecture.

Resnet-Block

D le-Block
\ oysampe oc Upsample-Block
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The model will be same for each timestep.

Diffusion
Model

always the same

The way of telling the model at what time step we are, is done using the sinusoidal embeddings that we
learned from the Transformer paper.
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Diffusion
Model

sinusoidal embedding

This is passed to each residual block and it is very important because forward diffusion process is using a
schedule (we discussed it a little on it which scales mean and variance). With this embedding the model
can remove the noise at different levels in different amount of time intervals which effects the output a lot.
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NEXT UP

For the next presentation,

We will be going through the Math behind the working of DDPM extending some concepts we learned
today and extend it to implement PyTorch based basic DDPM model.

We will be going through the improvements of the basic DDPM model like Latent Diffusion Models and
some tunings to the basic DDPM along with other future scopes.
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PAPERS REFERRED

Score Based Models - https://arxiv.org/pdf/1907.05600v3

Denoising Diffusion Probabilistic Model - https://arxiv.org/pdf/2006.11239
Some improvements done by OpenAl - https://arxiv.org/pdf/2102.09672
Latent Diffusion Models - https://arxiv.org/pdf/2112.10752

40


https://arxiv.org/pdf/1907.05600v3
https://arxiv.org/pdf/2006.11239
https://arxiv.org/pdf/2102.09672
https://arxiv.org/pdf/2112.10752

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

THANK YOU!
SEE YOU NEXT WEEK!
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