
56/86

⌦-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

In other words, f(n) 2 ⌦(g(n)) if f(n) � cg(n) for some c and
large enough n.

56/86

⌦-Notation: Asymptotic Lower Bound

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

In other words, f(n) 2 ⌦(g(n)) if f(n) � cg(n) for some c and
large enough n.

57/86

⌦-Notation: Asymptotic Lower Bound

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

nn0

cg(n)

f (n)
f(n) = ⌦(g(n))

58/86

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

58/86

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

58/86

⌦-Notation: Asymptotic Lower Bound

Again, we use “=” instead of 2.
4n2 = ⌦(n� 10)
3n2 � n+ 10 = ⌦(n2 � 20)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  �

Theorem f(n) = O(g(n)) , g(n) = ⌦(f(n)).

59/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

59/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

59/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

f(n) = ⇥(g(n)), then for large enough n, we have “f(n) ⇡ g(n)”.

nn0

c1g(n)

f (n)

c2g(n)
f(n) = ⇥(g(n))

60/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

? 2n/3+
p
n+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

60/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

? 2n/3+
p
n+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

60/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

? 2n/3+
p
n+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

60/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

? 2n/3+
p
n+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

60/86

⇥-Notation: Asymptotic Tight Bound

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

3n2 + 2n = ⇥(n2 � 20n)

2n/3+100 = ⇥(2n/3)

? 2n/3+
p
n+100 = ⇥(2n/3)

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Theorem f(n) = ⇥(g(n)) if and only if
f(n) = O(g(n)) and f(n) = ⌦(g(n)).

61/86

Recall: O,⌦,⇥-Notation: Asymptotic Bounds

O-Notation For a function g(n),

O(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n)  cg(n), 8n � n0

.

⌦-Notation For a function g(n),

⌦(g(n)) =
�
function f : 9c > 0, n0 > 0 such that

f(n) � cg(n), 8n � n0

.

⇥-Notation For a function g(n),

⇥(g(n)) =
�
function f : 9c2 � c1 > 0, n0 > 0 such that

c1g(n)  f(n)  c2g(n), 8n � n0

.

62/86

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Trivial Facts on Comparison Relations
a  b , b � a

a = b , a  b and a � b

a  b or a � b

Correct Analogies
f(n) = O(g(n)) , g(n) = ⌦(f(n))

f(n) = ⇥(g(n)) , f(n) = O(g(n)) and f(n) = ⌦(g(n))

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

62/86

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Trivial Facts on Comparison Relations
a  b , b � a

a = b , a  b and a � b

a  b or a � b

Correct Analogies
f(n) = O(g(n)) , g(n) = ⌦(f(n))

f(n) = ⇥(g(n)) , f(n) = O(g(n)) and f(n) = ⌦(g(n))

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

62/86

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Trivial Facts on Comparison Relations
a  b , b � a

a = b , a  b and a � b

a  b or a � b

Correct Analogies
f(n) = O(g(n)) , g(n) = ⌦(f(n))

f(n) = ⇥(g(n)) , f(n) = O(g(n)) and f(n) = ⌦(g(n))

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

62/86

Asymptotic Notations O ⌦ ⇥
Comparison Relations  � =

Trivial Facts on Comparison Relations
a  b , b � a

a = b , a  b and a � b

a  b or a � b

Correct Analogies
f(n) = O(g(n)) , g(n) = ⌦(f(n))

f(n) = ⇥(g(n)) , f(n) = O(g(n)) and f(n) = ⌦(g(n))

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

63/86

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

f(n) = n
2

g(n) =

(
1 if n is odd

n
3 if n is even

63/86

Incorrect Analogy
f(n) = O(g(n)) or f(n) = ⌦(g(n))

f(n) = n
2

g(n) =

(
1 if n is odd

n
3 if n is even

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

64/86

Recall: Informal way to define O-notation

ignoring lower order terms: 3n2 � 10n� 5! 3n2

ignoring leading constant: 3n2 ! n
2

3n2 � 10n� 5 = O(n2)

Indeed, 3n2 � 10n� 5 = ⌦(n2), 3n2 � 10n� 5 = ⇥(n2)

In the formal definition of O(·), nothing tells us to ignore lower
order terms and leading constant.

3n2 � 10n� 5 = O(5n2 � 6n+ 5) is correct, though weird

3n2 � 10n� 5 = O(n2) is the most natural since n
2 is the

simplest term we can have inside O(·).

65/86

Notice that O denotes asymptotic upper bound

n
2 + 2n = O(n3) is correct.

The following sentence is correct: the running time of the
insertion sort algorithm is O(n4).

We say: the running time of the insertion sort algorithm is O(n2)
and the bound is tight.

We do not use ⌦ and ⇥ very often when we upper bound running
times.

65/86

Notice that O denotes asymptotic upper bound

n
2 + 2n = O(n3) is correct.

The following sentence is correct: the running time of the
insertion sort algorithm is O(n4).

We say: the running time of the insertion sort algorithm is O(n2)
and the bound is tight.

We do not use ⌦ and ⇥ very often when we upper bound running
times.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n

No Yes No

3n� 50 n
2 � 7n

Yes No No

n
2 � 100n 5n2 + 30n

Yes Yes Yes

log2 n log10 n

Yes Yes Yes

log10 n n
0.1

Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n

Yes No No

n
2 � 100n 5n2 + 30n

Yes Yes Yes

log2 n log10 n

Yes Yes Yes

log10 n n
0.1

Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n

Yes Yes Yes

log2 n log10 n

Yes Yes Yes

log10 n n
0.1

Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n

Yes Yes Yes

log10 n n
0.1

Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n Yes Yes Yes

log10 n n
0.1

Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n Yes Yes Yes

log10 n n
0.1 Yes No No

2n 2n/2

No Yes No

p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n Yes Yes Yes

log10 n n
0.1 Yes No No

2n 2n/2 No Yes No
p
n n

sinn

No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

66/86

Exercise
For each pair of functions f, g in the following table, indicate whether
f is O,⌦ or ⇥ of g.

f g O ⌦ ⇥

n
3 � 100n 5n2 + 3n No Yes No

3n� 50 n
2 � 7n Yes No No

n
2 � 100n 5n2 + 30n Yes Yes Yes

log2 n log10 n Yes Yes Yes

log10 n n
0.1 Yes No No

2n 2n/2 No Yes No
p
n n

sinn No No No

We often use log n for log2 n. But for O(log n), the base is not
important.

67/86

Asymptotic Notations O ⌦ ⇥ o !

Comparison Relations  � = < >

Questions?

67/86

Asymptotic Notations O ⌦ ⇥ o !

Comparison Relations  � = < >

Questions?

68/86

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

69/86

O(n) (Linear) Running Time

Computing the sum of n numbers

sum(A, n)
1: S 0
2: for i 1 to n

3: S S + A[i]
4: return S

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29

70/86

O(n) (Linear) Running Time

Merge two sorted arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48

71/86

O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with
length n1 and n2

1: A []; i 1; j 1
2: while i  n1 and j  n2 do

3: if B[i]  C[j] then
4: append B[i] to A; i i+ 1
5: else

6: append C[j] to A; j j + 1

7: if i  n1 then append B[i..n1] to A

8: if j  n2 then append C[j..n2] to A

9: return A

Running time = O(n) where n = n1 + n2.

71/86

O(n) (Linear) Running Time

merge(B,C, n1, n2) \\ B and C are sorted, with
length n1 and n2

1: A []; i 1; j 1
2: while i  n1 and j  n2 do

3: if B[i]  C[j] then
4: append B[i] to A; i i+ 1
5: else

6: append C[j] to A; j j + 1

7: if i  n1 then append B[i..n1] to A

8: if j  n2 then append C[j..n2] to A

9: return A

Running time = O(n) where n = n1 + n2.

72/86

O(n log n) Running Time

merge-sort(A, n)
1: if n = 1 then

2: return A

3: B merge-sort
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

4: C merge-sort
⇣
A
⇥
bn/2c+ 1..n

⇤
, n� bn/2c

⌘

5: return merge(B,C, bn/2c, n� bn/2c)

73/86

O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

73/86

O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

73/86

O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

73/86

O(n log n) Running Time

Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(log n) levels

Running time = O(n log n)

74/86

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

74/86

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

75/86

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)
1: bestd 1
2: for i 1 to n� 1 do

3: for j i+ 1 to n do

4: d
p

(x[i]� x[j])2 + (y[i]� y[j])2

5: if d < bestd then

6: besti i, bestj j, bestd d

7: return (besti, bestj)

Closest pair can be solved in O(n log n) time!

75/86

O(n2) (Quardatic) Running Time

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

closest-pair(x, y, n)
1: bestd 1
2: for i 1 to n� 1 do

3: for j i+ 1 to n do

4: d
p

(x[i]� x[j])2 + (y[i]� y[j])2

5: if d < bestd then

6: besti i, bestj j, bestd d

7: return (besti, bestj)

Closest pair can be solved in O(n log n) time!

76/86

O(n3) (Cubic) Running Time

Multiply two matrices of size n⇥ n

matrix-multiplication(A,B, n)
1: C matrix of size n⇥ n, with all entries being 0
2: for i 1 to n do

3: for j 1 to n do

4: for k 1 to n do

5: C[i, k] C[i, k] + A[i, j]⇥ B[j, k]

6: return C

