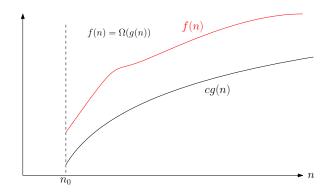
$\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$


$$\begin{split} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.

Ω -Notation: Asymptotic Lower Bound

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

$\Omega\text{-Notation}$: Asymptotic Lower Bound

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

$\Omega\text{-Notation:}$ Asymptotic Lower Bound

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n - 10)$$

• $3n^2 - n + 10 = \Omega(n^2 - 20)$
Asymptotic Notations $O \mid \Omega \mid \Theta$
Comparison Relations $\leq \geq$

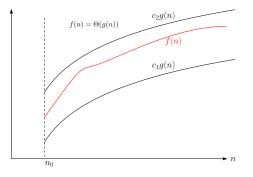
$\Omega\text{-Notation}$: Asymptotic Lower Bound

• Again, we use "=" instead of
$$\in$$
.

•
$$4n^2 = \Omega(n - 10)$$

• $3n^2 - n + 10 = \Omega(n^2 - 20)$
Asymptotic Notations $O \mid \Omega \mid \Theta$
Comparison Relations $\leq \geq$

Theorem $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$


$$\begin{split} \Theta\text{-Notation For a function } g(n), \\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) &\leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

• $3n^2 + 2n = \Theta(n^2 - 20n)$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3+100} = \Theta(2^{n/3})$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ &c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

- $2^{n/3+100} = \Theta(2^{n/3})$
- ? $2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

- $2^{n/3+100} = \Theta(2^{n/3})$
- ? $2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

$$\begin{split} \Theta\text{-Notation For a function } g(n),\\ \Theta(g(n)) &= \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}. \end{split}$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

• $2^{n/3+100} = \Theta(2^{n/3})$

• ?
$$2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Theorem $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Recall: O, Ω, Θ -Notation: Asymptotic Bounds

 $\begin{aligned} O\text{-Notation For a function } g(n), \\ O(g(n)) &= \big\{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\leq cg(n), \forall n \geq n_0 \big\}. \end{aligned}$

$$\begin{split} \Omega\text{-Notation For a function } g(n),\\ \Omega(g(n)) &= \big\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that} \\ f(n) &\geq cg(n), \forall n \geq n_0 \big\}. \end{split}$$

 $\Theta-\text{Notation For a function } g(n),$ $\Theta(g(n)) = \{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0 \}.$

	Asymptotic Notations	0	Ω	Θ
_	Comparison Relations	\leq	\geq	=

Asymptotic NotationsO Ω Θ Comparison Relations \leq \geq =

Trivial Facts on Comparison Relations

- $\bullet \ a \leq b \ \Leftrightarrow \ b \geq a$
- $\bullet \ a=b \ \Leftrightarrow \ a\leq b \text{ and } a\geq b$
- $a \leq b$ or $a \geq b$

Asymptotic NotationsO Ω Θ Comparison Relations \leq \geq =

Trivial Facts on Comparison Relations

- $a \le b \iff b \ge a$
- $\bullet \ a=b \ \Leftrightarrow \ a\leq b \ \text{and} \ a\geq b$
- $\bullet \ a \leq b \text{ or } a \geq b$

Correct Analogies

•
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

 $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Asymptotic NotationsO Ω Θ Comparison Relations \leq \geq =

Trivial Facts on Comparison Relations

- $a \le b \iff b \ge a$
- $\bullet \ a=b \ \Leftrightarrow \ a\leq b \text{ and } a\geq b$
- $\bullet \ a \leq b \text{ or } a \geq b$

Correct Analogies

•
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

 $\bullet \ f(n) = \Theta(g(n)) \ \Leftrightarrow \ f(n) = O(g(n)) \ \text{and} \ f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(g(n))$

Incorrect Analogy

•
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(g(n))$

$$f(n) = n^2$$

 $g(n) = egin{cases} 1 & ext{if } n ext{ is odd} \ n^3 & ext{if } n ext{ is even} \end{cases}$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

- ignoring lower order terms: $3n^2-10n-5\rightarrow 3n^2$
- \bullet ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot),$ nothing tells us to ignore lower order terms and leading constant.

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot),$ nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot),$ nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2 10n 5 = O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is ${\cal O}(n^4)$.
- We say: the running time of the insertion sort algorithm is ${\cal O}(n^2)$ and the bound is tight.

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is ${\cal O}(n^4)$.
- We say: the running time of the insertion sort algorithm is ${\cal O}(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^{2} + 3n$			
3n - 50	$n^{2} - 7n$			
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$			
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^{3} - 100n$	$5n^{2} + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

g	O	Ω	Θ
$5n^2 + 3n$	No	Yes	No
$n^{2} - 7n$	Yes	No	No
$5n^2 + 30n$	Yes	Yes	Yes
$\log_{10} n$	Yes	Yes	Yes
$n^{0.1}$	Yes	No	No
$2^{n/2}$			
$n^{\sin n}$			
		$\begin{array}{c c} g & 0 \\ \hline 5n^2 + 3n & No \\ \hline n^2 - 7n & Yes \\ \hline 5n^2 + 30n & Yes \\ \hline \log_{10} n & Yes \\ \hline n^{0.1} & Yes \\ \hline 2^{n/2} & \end{array}$	3 3 3 $5n^2 + 3n$ No Yes $n^2 - 7n$ Yes No $5n^2 + 30n$ Yes Yes $100_{10}n$ Yes Yes $n^{0.1}$ Yes No $2^{n/2}$ Image: Constraint of the second s

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$			

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

Exercise

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^{3} - 100n$	$5n^{2} + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

We often use $\log n$ for $\log_2 n$. But for $O(\log n)$, the base is not important.

Asymptotic NotationsO Ω Θ oComparison Relations \leq \geq =<

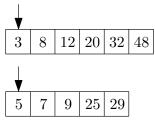
Outline

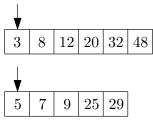
Syllabus

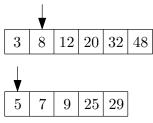
2 Introduction

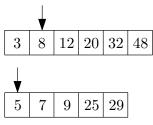
- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort

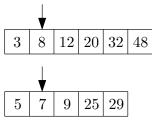
3 Asymptotic Notations

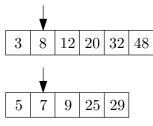

Computing the sum of \boldsymbol{n} numbers

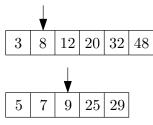

 $\mathsf{sum}(A,n)$

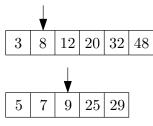

- 1: $S \leftarrow 0$
- 2: for $i \leftarrow 1$ to n
- 3: $S \leftarrow S + A[i]$
- 4: return S

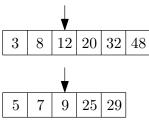

3	8	12	20	32	48
---	---	----	----	----	----

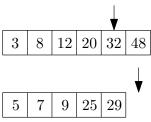

5 7	9	25	29
-----	---	----	----









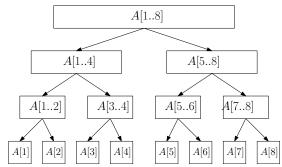


3 5	7 8	9	12	20	25	29
-----	-----	---	----	----	----	----

3 5 7 8	9 12	20 25	29 32	48
---------	------	-------	-------	----

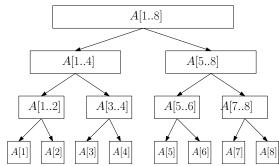
 $\operatorname{merge}(B, C, n_1, n_2) \setminus B$ and C are sorted, with length n_1 and n_2 1: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$ 2: while $i < n_1$ and $j < n_2$ do if B[i] < C[j] then 3: append B[i] to A; $i \leftarrow i+1$ 4: else 5: append C[j] to A; $j \leftarrow j+1$ 6: 7: if $i < n_1$ then append $B[i..n_1]$ to A 8: if $j < n_2$ then append $C[j..n_2]$ to A 9: return A

$merge(B,C,n_1,n_2) \qquad igwedge A$ and C are sorted, with
length n_1 and n_2
1: $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2: while $i \leq n_1$ and $j \leq n_2$ do
3: if $B[i] \leq C[j]$ then
4: append $B[i]$ to A ; $i \leftarrow i+1$
5: else
6: append $C[j]$ to $A; j \leftarrow j+1$
7: if $i \leq n_1$ then append $B[in_1]$ to A
8: if $j \leq n_2$ then append $C[jn_2]$ to A
9: return A


Running time = O(n) where $n = n_1 + n_2$.

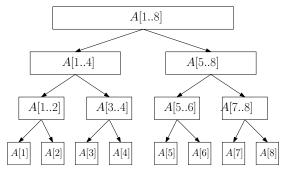
merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: $B \leftarrow \text{merge-sort}\left(A\left[1..\lfloor n/2\rfloor\right], \lfloor n/2\rfloor\right)$ 4: $C \leftarrow \text{merge-sort}\left(A\left[\lfloor n/2\rfloor + 1..n\right], n \lfloor n/2\rfloor\right)$
- 5: **return** merge(B, C, |n/2|, n |n/2|)


$O(n \log n)$ Running Time

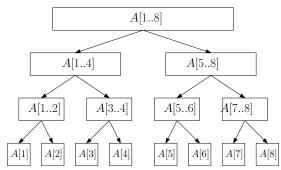
• Merge-Sort

$O(n\log n)$ Running Time


• Merge-Sort

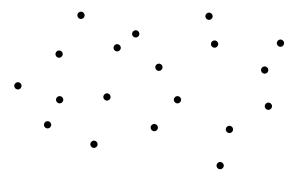
• Each level takes running time O(n)

$O(n\log n)$ Running Time

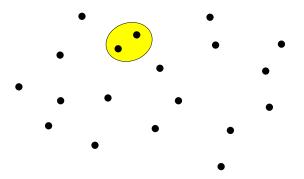

• Merge-Sort

- Each level takes running time O(n)
- There are $O(\log n)$ levels

$O(n\log n)$ Running Time


• Merge-Sort

- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$


Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

closest-pair(x, y, n)

1:
$$bestd \leftarrow \infty$$

2: for $i \leftarrow 1$ to $n - 1$ do
3: for $j \leftarrow i + 1$ to n do
4: $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5: if $d < bestd$ then
6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$
7: return $(besti, bestj)$

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

closest-pair(x, y, n)

1:
$$bestd \leftarrow \infty$$

2: for $i \leftarrow 1$ to $n - 1$ do
3: for $j \leftarrow i + 1$ to n do
4: $d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5: if $d < bestd$ then
6: $besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$
7: return $(besti, bestj)$

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n\times n$

matrix-multiplication (A, B, n)

- 1: $C \leftarrow \text{matrix of size } n \times n$, with all entries being 0
- 2: for $i \leftarrow 1$ to n do
- 3: for $j \leftarrow 1$ to n do
- 4: for $k \leftarrow 1$ to n do
- 5: $C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$

6: **return** *C*