Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, either u € L,v € R or
veELu€R.
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Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component
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Test Bipartiteness

bad edges!



Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbors u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as ‘“visited”




Testing Bipartiteness using BFS

test-bipartiteness(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited”
3: color[s] < 0
4: while head < tail do
5: v < queue[head], head < head + 1
6: for all neighbors u of v do
7: if w is "“unvisited” then
8: tail < tail + 1, queue[tail] = u
9: mark u as “visited”
10: color|u] <— 1 — color[v]
11: else if color[u] = color|v] then
12: print( “G is not bipartite”) and exit )
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mark all vertices as “unvisited”

. for each vertex v € V' do

if v is “unvisited” then
test-bipartiteness(v)

. print( "G is bipartite”)
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Obs. Running time of algorithm = O(n + m) J




Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as “unvisited”
2: recursive-test-DFS(s)

recursive-test-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then , recursive-test-DFS(u)




Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as “unvisited”
2: color[s] < 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then
color|u] <— 1 — color|v], recursive-test-DFS(u)
else if color[u] = color|v] then
print(“G is not bipartite”) and exit

e & g2
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Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.

Obs. Bipartite graph may contain
cycles.

Obs. |If a graph is a tree, then it is also
a bipartite graph.
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Obs. BFS and DFS naturally induce a tree. )

Obs. If GG is a tree, then BFS tree = DFS tree. J

Obs. |If BFS tree =DFS tree, then G is a tree. J




BFS and DFS

Obs. |If BFS tree =DFS tree, then G is a tree. J

@ True: simple, undirected graph

@ Not True: directed graph



@ Topological Ordering
@ Applications: Word Ladder



Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V' — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)
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@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.
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Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible? )

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

@ Maintain a queue (or stack) of vertices v with d, =0




topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy +— d,+1
: S+ {v:d,=0},i«<0
while S # () do
v < arbitrary vertex in S, S < S\ {v}
i i+1, m(v) 1
for every u such that (v,u) € E do
10: dy <+ d, —1
11: if d, =0 then add uto S
12: if ¢ < n then output “not a DAG"

© o N g ks

@ S can be represented using a queue or a stack
@ Running time = O(n + m)



S as a Queue or a Stack

DS Queue Stack

Initialization | head < 1, tail < 0 | top <+ 0

Non-Empty? | head < tail top > 0
Add(v) tail < tail + 1 top < top+1
Sltail] < v Sltop] < v
Retrieve v | v <= S[head] v < Sltop]

head < head + 1 top < top — 1


























































@ Topological Ordering
@ Applications: Word Ladder



Def. Word: A string formed by letters. |

Def. Adjacency words: Word A and B are adjacent if they differ in
exactly one letter. J

e.g. word and work; tell and tall; askbe and askee.



Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word. J



Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word.

@ The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.



Word Ladder Problem
Input: Two words S and 7, a list of words A = {W;, W, ..., Wi }.

Output: “ The smallest word ladder” if we can change S to T' by
moving between adjacency words in AU {S,T};
Otherwise, “No word ladder” .

Example:

@ S="aefgh", T="dImih"

o Wi="aefih" Wo="aemgh”, Ws="dIfih"
Wy="sefih”, Wy="adfgh", Wsg="demih”
Wr="defih", Wg="demgh”, Wog="semih”



Example:

@ S="aefgh", T="dlmih"

o Wi="aefih", Wo="aemgh", Ws="dIfih"
Wy="sefih", Ws="adfgh", Wg="demih”
Wr="defih" Wg="demgh", Wog="semih”

o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.



o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.

@ Hints: Given vertex v, check its nearest neighbor.



