Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L$, $v \in R$ or $v \in L$, $u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Report "not a bipartite graph" if contradiction was found

If G contains multiple connected components, repeat above algorithm for each component
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat the above algorithm for each component.
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\cdots \)
- Report “not a bipartite graph” if contradiction was found
- If \(G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

\[\text{BFS}(s) \]

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \(s \) as “visited” and all other vertices as “unvisited”
3: while \(\text{head} \leq \text{tail} \) do
4: \(\text{v} \leftarrow \text{queue}[\text{head}], \text{head} \leftarrow \text{head} + 1 \)
5: for all neighbors \(u \) of \(v \) do
6: \hspace{1em} if \(u \) is “unvisited” then
7: \hspace{2em} \text{tail} \leftarrow \text{tail} + 1, \text{queue}[\text{tail}] = u
8: \hspace{2em} mark \(u \) as “visited”
test-bipartiteness(s)

1: head ← 1, tail ← 1, queue[1] ← s
2: mark s as “visited” and all other vertices as “unvisited”
3: color[s] ← 0
4: while head ≤ tail do
5: v ← queue[head], head ← head + 1
6: for all neighbors u of v do
7: if u is “unvisited” then
8: tail ← tail + 1, queue[tail] = u
9: mark u as “visited”
10: color[u] ← 1 − color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex \(v \in V \) do
3: if \(v \) is “unvisited” then
4: test-bipartiteness\((v)\)
5: print(“\(G \) is bipartite”)
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: if v is “unvisited” then
4: test-bipartiteness(v)
5: print(“G is bipartite”)

Obs. Running time of algorithm = $O(n + m)$
Testing Bipartiteness using DFS

test-bipartiteness-DFS(\(s\))

1: mark all vertices as “unvisited”
2: recursive-test-DFS(\(s\))

recursive-test-DFS(\(v\))

1: mark \(v\) as “visited”
2: **for** all neighbors \(u\) of \(v\) **do**
3: **if** \(u\) is unvisited **then**, recursive-test-DFS(\(u\))
Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as “unvisited”
2: \text{color}[s] \leftarrow 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)

1: mark v as “visited”
2: \textbf{for} all neighbors u of v \textbf{do}
3: \hspace{1em} \textbf{if} u is unvisited \textbf{then}
4: \hspace{2em} \text{color}[u] \leftarrow 1 - \text{color}[v], \text{recursive-test-DFS}(u)
5: \hspace{2em} \textbf{else if} \text{color}[u] = \text{color}[v] \textbf{then}
6: \hspace{3em} \text{print}(“G is not bipartite”) and exit
Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: if v is “unvisited” then
4: test-bipartiteness-DFS(v)
5: print(“G is bipartite”)
Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: if v is “unvisited” then
4: test-bipartiteness-DFS(v)
5: print(“G is bipartite”)

Obs. Running time of algorithm = $O(n + m)$
Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.
Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.
Bipartite Graph

Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also a bipartite graph.
BFS and DFS

Obs. BFS and DFS naturally induce a tree.
Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree $=$ DFS tree.
BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree $=$ DFS tree.

Obs. If BFS tree $=$ DFS tree, then G is a tree.
BFS and DFS

Obs. If BFS tree = DFS tree, then G is a tree.

- True: simple, undirected graph
- Not True: directed graph
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Types of Graphs

3. Bipartite Graphs
 - Testing Bipartiteness

4. Topological Ordering
 - Applications: Word Ladder
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots , n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering Problem

Input: a directed acyclic graph (DAG) \(G = (V, E) \)

Output: 1-to-1 function \(\pi : V \rightarrow \{1, 2, 3 \cdots, n\} \), so that
- if \((u, v) \in E\) then \(\pi(u) < \pi(v)\)
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- **Algorithm**: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1. let $d_v \leftarrow 0$ for every $v \in V$
2. for every $v \in V$ do
3. for every u such that $(v, u) \in E$ do
4. $d_u \leftarrow d_u + 1$
5. $S \leftarrow \{v : d_v = 0\}$, $i \leftarrow 0$
6. while $S \neq \emptyset$ do
7. $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8. $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9. for every u such that $(v, u) \in E$ do
10. $d_u \leftarrow d_u - 1$
11. if $d_u = 0$ then add u to S
12. if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$
S as a Queue or a Stack

<table>
<thead>
<tr>
<th>DS</th>
<th>Queue</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$head \leftarrow 1$, $tail \leftarrow 0$</td>
<td>$top \leftarrow 0$</td>
</tr>
<tr>
<td>Non-Empty?</td>
<td>$head \leq tail$</td>
<td>$top > 0$</td>
</tr>
<tr>
<td>Add(v)</td>
<td>$tail \leftarrow tail + 1$</td>
<td>$top \leftarrow top + 1$</td>
</tr>
<tr>
<td></td>
<td>$S[tail] \leftarrow v$</td>
<td>$S[top] \leftarrow v$</td>
</tr>
<tr>
<td>Retrieve v</td>
<td>$v \leftarrow S[head]$</td>
<td>$v \leftarrow S[top]$</td>
</tr>
<tr>
<td></td>
<td>$head \leftarrow head + 1$</td>
<td>$top \leftarrow top - 1$</td>
</tr>
</tbody>
</table>
Example

Queue:
a b c d e f g

Degree:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

![Diagram of a graph with nodes labeled a, b, c, d, e, f, g.]

A queue labeled a, b, c, d, e, f, g with arrows indicating direction.

Degree distribution:

<table>
<thead>
<tr>
<th>degree</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

- **Queue:**
 - **Tail:** e
 - **Head:** a
 - **Elements:** a, b, c, d, e, f, g

- **Degree:**
 - a: 0, b: 0, c: 0, d: 1, e: 2, f: 1, g: 3
Example

Queue:

\[
\begin{array}{ccccccc}
\text{tail} & \text{head} \\
\hline
\text{queue:} & a & b & c & d & e & f & g \\
\text{degree} & 0 & 0 & 0 & 1 & 2 & 1 & 3 \\
\end{array}
\]
Example

Queue:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

- **c**
- **d**
- **f**
- **e**
- **g**

Queue:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Head

Tail
Example

Queue:

```
queue:  a  b  c
```

degree:

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```
Example

- **Queue:**
 - Queue: $a \ b \ c$
 - Tail
 - Head

- **Degree:**
 - Degree: $0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 3$
Example

queue:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
</tbody>
</table>

degree

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Example

queue:

\[
\begin{array}{cccccc}
\text{head} & & & & & \text{tail} \\
\text{queue:} & a & b & c & d & f \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{degree} & a & b & c & d & e & f & g \\
0 & 0 & 0 & 0 & 1 & 0 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{graph:} & e & \rightarrow d & \rightarrow f & \rightarrow g \\
\end{array}
\]
Example

queue: \[a \quad b \quad c \quad d \quad f \]

\[
\begin{array}{c|cccccccc}
\text{degree} & a & b & c & d & e & f & g \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\]
Example

queue: \[a \ b \ c \ d \ f \ e \]

<table>
<thead>
<tr>
<th>degree</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Example

queue: \[\begin{array}{ccccccc} a & b & c & d & f & e \end{array} \]

degree

\[
\begin{array}{cccccccc}
\text{degree} & a & b & c & d & e & f & g \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}
\]
Example

queue: a b c d f e

degree	a	b	c	d	e	f	g
	0	0	0	0	0	0	1
Example

queue:

\[
\begin{array}{ccccccc}
 & a & b & c & d & f & e \\
\end{array}
\]

degree:

\[
\begin{array}{cccccccc}
 & a & b & c & d & e & f & g \\
 \text{degree} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Example

queue: $a \ b \ c \ d \ f \ e$

<table>
<thead>
<tr>
<th>degree</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

Queue:

\[
\begin{array}{cccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{f} & \text{e} & \text{g} \\
\text{g} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example

Queue: $a \ b \ c \ d \ f \ e \ g$

Degree: $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Types of Graphs

3. Bipartite Graphs
 - Testing Bipartiteness

4. Topological Ordering
 - Applications: Word Ladder
Def. Word: A string formed by letters.

Def. Adjacency words: Word A and B are adjacent if they differ in exactly one letter.

E.g. word and work; tell and tall; askbe and askee.
Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.
Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

- The objective is to make the change in the smallest number of steps, with each step involving changing a **single letter** of the word to create a new valid word.
Word Ladder Problem

Input: Two words S and T, a list of words $A = \{W_1, W_2, \ldots, W_k\}$.

Output: “The smallest word ladder” if we can change S to T by moving between adjacency words in $A \cup \{S, T\}$; Otherwise, “No word ladder”.

Example:

- $S=\text{"a e f g h"}$, $T = \text{"d l m i h"}$
- $W_1=\text{"a e f i h"}$, $W_2 = \text{"a e m g h"}$, $W_3=\text{"d l f i h"}$
- $W_4 = \text{"s e f i h"}$, $W_5=\text{"a d f g h"}$, $W_6 = \text{"d e m i h"}$
- $W_7=\text{"d e f i h"}$, $W_8 = \text{"d e m g h"}$, $W_9 = \text{"s e m i h"}$
Example:
- $S = \text{“a e f g h”}$, $T = \text{“d l m i h”}$
- $W_1 = \text{“a e f i h”}$, $W_2 = \text{“a e m g h”}$, $W_3 = \text{“d l f i h”}$
- $W_4 = \text{“s e f i h”}$, $W_5 = \text{“a d f g h”}$, $W_6 = \text{“d e m i h”}$
- $W_7 = \text{“d e f i h”}$, $W_8 = \text{“d e m g h”}$, $W_9 = \text{“s e m i h”}$

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.
Each vertex corresponds to a word.

Two vertices are adjacent if the corresponding words are adjacent.

Hints: Given vertex v, check its nearest neighbor.