Testing Bipartiteness: Applications of BFS

Def. A graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Testing Bipartiteness using BFS

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: for all neighbors u of v do
6: if u is "unvisited" then
7:
tail \leftarrow tail +1, queue $[$ tail $]=u$
8: mark u as "visited"

Testing Bipartiteness using BFS

test-bipartiteness (s)
1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: color $[s] \leftarrow 0$
4: while head \leq tail do
5: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
6: for all neighbors u of v do
7:
8:
9 if u is "unvisited" then tail \leftarrow tail +1, queue $[$ tail $]=u$ mark u as "visited"
10:
11:
12:

$$
\operatorname{color}[u] \leftarrow 1-\text { color }[v]
$$

else if color $[u]=\operatorname{color}[v]$ then print(" G is not bipartite") and exit

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using BFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness (v)
5: print(" G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as "unvisited"
2: recursive-test-DFS(s)

recursive-test-DFS (v)

1: mark v as "visited"
2: for all neighbors u of v do
3: if u is unvisited then, recursive-test-DFS (u)

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as "unvisited"
2: color $[s] \leftarrow 0$
3: recursive-test-DFS(s)

recursive-test-DFS (v)

1: mark v as "visited"
2: for all neighbors u of v do
3: if u is unvisited then
4:
color $[u] \leftarrow 1$ - color $[v]$, recursive-test-DFS (u)
else if color $[u]=$ color $[v]$ then
print(" G is not bipartite") and exit

Testing Bipartiteness using DFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness-DFS (v)
5: $\operatorname{print}($ " G is bipartite")

Testing Bipartiteness using DFS

1: mark all vertices as "unvisited"
2: for each vertex $v \in V$ do
3: if v is "unvisited" then
4: \quad test-bipartiteness-DFS (v)
5: print(" G is bipartite")

Obs. Running time of algorithm $=O(n+m)$

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also
 a bipartite graph.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree $=$ DFS tree.

BFS and DFS

Obs. BFS and DFS naturally induce a tree.
Obs. If G is a tree, then BFS tree $=\mathrm{DFS}$ tree.
Obs. If BFS tree =DFS tree, then G is a tree.

BFS and DFS

Obs. If BFS tree =DFS tree, then G is a tree.

- True: simple, undirected graph
- Not True: directed graph

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness
(4) Topological Ordering
- Applications: Word Ladder

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G=(V, E)$
Output: 1-to-1 function $\pi: V \rightarrow\{1,2,3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u)<\pi(v)$

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_{v} of vertices
- Maintain a queue (or stack) of vertices v with $d_{v}=0$

topological-sort (G)

1: let $d_{v} \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: \quad for every u such that $(v, u) \in E$ do
4: $\quad d_{u} \leftarrow d_{u}+1$
5: $S \leftarrow\left\{v: d_{v}=0\right\}, i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $\quad v \leftarrow$ arbitrary vertex in $S, S \leftarrow S \backslash\{v\}$
8: $\quad i \leftarrow i+1, \pi(v) \leftarrow i$
9: \quad for every u such that $(v, u) \in E$ do
10: $\quad d_{u} \leftarrow d_{u}-1$
11: if $d_{u}=0$ then add u to S
12: if $i<n$ then output "not a DAG"

- S can be represented using a queue or a stack
- Running time $=O(n+m)$

S as a Queue or a Stack

DS	Queue	Stack
Initialization	head $\leftarrow 1$, tail $\leftarrow 0$	top $\leftarrow 0$
Non-Empty?	head \leq tail	top >0
Add (v)	tail \leftarrow tail +1	top \leftarrow top +1
	$S[$ tail $] \leftarrow v$	$S[$ top $] \leftarrow v$
Retrieve v	$v \leftarrow S[$ head $]$	$v \leftarrow S[$ top $]$
	head \leftarrow head +1	top \leftarrow top -1

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

Example

Example

Example

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Example

(g)

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	0

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness
(4) Topological Ordering
- Applications: Word Ladder

Def. Word: A string formed by letters.

Def. Adjacency words: Word A and B are adjacent if they differ in exactly one letter.
e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

- The objective is to make the change in the smallest number of steps, with each step involving changing a single letter of the word to create a new valid word.

Word Ladder Problem

Input: Two words S and T, a list of words $A=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$.
Output: " The smallest word ladder" if we can change S to T by moving between adjacency words in $A \cup\{S, T\}$; Otherwise, "No word ladder".

Example:

- $\mathrm{S}=$ "a efgh", T = "d Imih"
- $W_{1}=$ "a e fi h", $W_{2}=$ "a e mg h", $W_{3}=$ "d Ifih" $W_{4}=$ "s efi h", $W_{5}=$ "adf $\mathrm{gh} \mathrm{h}^{\prime}, W_{6}=$ "demih" $W_{7}=$ "defi h", $W_{8}=$ "demgh", $W_{9}=$ "semih"

Example:

- $S=$ "a efgh", $T=$ "d I mih"
- $W_{1}=$ "a e fih", $W_{2}=$ "a e m g h", $W_{3}=$ "d I fih" $W_{4}=$ "s efi h", $W_{5}=$ "a d fgh", $W_{6}=$ "d e mih" $W_{7}=$ "d efih", $W_{8}=$ "d e m g h", $W_{9}=$ "s e mih"

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.
- Hints: Given vertex v, check its nearest neighbor.

