Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, either u € L,v € R or
veELu€R.

Testing Bipartiteness

e Taking an arbitrary vertex s € V

Testing Bipartiteness

o Taking an arbitrary vertex s € V

@ Assuming s € L w.l.o.g

Testing Bipartiteness

o Taking an arbitrary vertex s € V
@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

Testing Bipartiteness

o Taking an arbitrary vertex s € V

@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

°
°

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L
°

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

°
°

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L
°
°

Report “not a bipartite graph” if contradiction was found

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

bad edges!

Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbors u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as ‘“visited”

Testing Bipartiteness using BFS

test-bipartiteness(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited”
3: color[s] < 0
4: while head < tail do
5: v < queue[head], head < head + 1
6: for all neighbors u of v do
7: if w is "“unvisited” then
8: tail < tail + 1, queue[tail] = u
9: mark u as “visited”
10: color|u] <— 1 — color[v]
11: else if color[u] = color|v] then
12: print(“G is not bipartite”) and exit)

Testing Bipartiteness using BFS

mark all vertices as “unvisited”

. for each vertex v € V' do

if v is “unvisited” then
test-bipartiteness(v)

. print(“G is bipartite”)

AN~ A

Testing Bipartiteness using BFS

mark all vertices as “unvisited”

. for each vertex v € V' do

if v is “unvisited” then
test-bipartiteness(v)

. print("G is bipartite”)

AN~ A

Obs. Running time of algorithm = O(n + m) J

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as “unvisited”
2: recursive-test-DFS(s)

recursive-test-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then , recursive-test-DFS(u)

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)

1: mark all vertices as “unvisited”
2: color[s] < 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then
color|u] <— 1 — color|v], recursive-test-DFS(u)
else if color[u] = color|v] then
print(“G is not bipartite”) and exit

e & g2

Testing Bipartiteness using DFS

mark all vertices as “unvisited”

. for each vertex v € V' do

if v is “unvisited” then
test-bipartiteness-DFS(v)

. print(“G is bipartite”)

AN~ A

Testing Bipartiteness using DFS

mark all vertices as “unvisited”

. for each vertex v € V' do

if v is “unvisited” then
test-bipartiteness-DFS(v)

. print("G is bipartite”)

AN~ A

Obs. Running time of algorithm = O(n + m) J

Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.

Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.

Obs. Bipartite graph may contain
cycles.

Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.

Obs. Bipartite graph may contain
cycles.

Obs. |If a graph is a tree, then it is also
a bipartite graph.

BFS and DFS

Obs. BFS and DFS naturally induce a tree. J

BFS and DFS

Obs. BFS and DFS naturally induce a tree. J

Obs. If GG is a tree, then BFS tree = DFS tree. J

BFS and DFS

Obs. BFS and DFS naturally induce a tree.)

Obs. If GG is a tree, then BFS tree = DFS tree. J

Obs. |If BFS tree =DFS tree, then G is a tree. J

BFS and DFS

Obs. |If BFS tree =DFS tree, then G is a tree. J

@ True: simple, undirected graph

@ Not True: directed graph

@ Topological Ordering
@ Applications: Word Ladder

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V' — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V' — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
WV

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
A

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ﬁ‘5‘

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ﬁ‘5‘

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
VA

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible? J

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?)

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

@ Maintain a queue (or stack) of vertices v with d, =0

topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy +— d,+1
: S+ {v:d,=0},i«<0
while S # () do
v < arbitrary vertex in S, S < S\ {v}
i i+1, m(v) 1
for every u such that (v,u) € E do
10: dy <+ d, —1
11: if d, =0 then add uto S
12: if ¢ < n then output “not a DAG"

© o N g ks

@ S can be represented using a queue or a stack
@ Running time = O(n + m)

S as a Queue or a Stack

DS Queue Stack

Initialization | head < 1, tail < 0 | top <+ 0

Non-Empty? | head < tail top > 0
Add(v) tail < tail + 1 top < top+1
Sltail] < v Sltop] < v
Retrieve v | v <= S[head] v < Sltop]

head < head + 1 top < top — 1

@ Topological Ordering
@ Applications: Word Ladder

Def. Word: A string formed by letters. |

Def. Adjacency words: Word A and B are adjacent if they differ in
exactly one letter. J

e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word. J

Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word.

@ The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.

Word Ladder Problem
Input: Two words S and 7, a list of words A = {W;, W, ..., Wi }.

Output: “ The smallest word ladder” if we can change S to T' by
moving between adjacency words in AU {S,T};
Otherwise, “No word ladder” .

Example:

@ S="aefgh", T="dImih"

o Wi="aefih" Wo="aemgh”, Ws="dIfih"
Wy="sefih”, Wy="adfgh", Wsg="demih”
Wr="defih", Wg="demgh”, Wog="semih”

Example:

@ S="aefgh", T="dlmih"

o Wi="aefih", Wo="aemgh", Ws="dIfih"
Wy="sefih", Ws="adfgh", Wg="demih”
Wr="defih" Wg="demgh", Wog="semih”

o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.

o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.

@ Hints: Given vertex v, check its nearest neighbor.

