Testing Bipartiteness: Applications of BFS

Def. A graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

 $\bullet \ \ {\it Taking an arbitrary vertex} \ s \in V$

- Taking an arbitrary vertex $s \in V$
- $\bullet \ \, \mathsf{Assuming} \,\, s \in L \,\, \mathsf{w.l.o.g}$

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- • •

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

- ullet Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- ullet Neighbors of s must be in R
- ullet Neighbors of neighbors of s must be in L
- · · ·
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

$\mathsf{BFS}(s)$

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \leq tail do

4: v \leftarrow queue[head], head \leftarrow head + 1

5: for all neighbors u of v do

6: if u is "unvisited" then

7: tail \leftarrow tail + 1, queue[tail] = u

8: mark u as "visited"
```

test-bipartiteness(s) 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$ 2: mark s as "visited" and all other vertices as "unvisited" 3: $color[s] \leftarrow 0$ 4: while head < tail do $v \leftarrow queue[head], head \leftarrow head + 1$ 5: **for** all neighbors u of v **do** 6: if u is "unvisited" then 7: $tail \leftarrow tail + 1, queue[tail] = u$ 8: mark u as "visited" 9: $color[u] \leftarrow 1 - color[v]$ 10: else if color[u] = color[v] then 11: print("G is not bipartite") and exit 12:

```
1: mark all vertices as "unvisited"
2: for each vertex v \in V do
3: if v is "unvisited" then
4: test-bipartiteness(v)
5: print("G is bipartite")
```

```
1: mark all vertices as "unvisited"

2: for each vertex v \in V do

3: if v is "unvisited" then

4: test-bipartiteness(v)
```

5: print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: **for** all neighbors u of v **do**
- 3: **if** u is unvisited **then**, recursive-test-DFS(u)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: $color[s] \leftarrow 0$
- 3: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: **for** all neighbors u of v **do**
- 3: **if** u is unvisited **then**
- 4: $color[u] \leftarrow 1 color[v]$, recursive-test-DFS(u)
- 5: **else if** color[u] = color[v] **then**
- 6: print("G is not bipartite") and exit

```
1: mark all vertices as "unvisited"
2: for each vertex v \in V do
3: if v is "unvisited" then
4: test-bipartiteness-DFS(v)
5: print("G is bipartite")
```

```
1: mark all vertices as "unvisited" 
2: for each vertex v \in V do 
3: if v is "unvisited" then 
4: test-bipartiteness-DFS(v)
```

5: print("G is bipartite")

Obs. Running time of algorithm = O(n+m)

Bipartite Graph

Def. An undirected graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

Bipartite Graph

Def. An undirected graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

Obs. Bipartite graph may contain cycles.

Bipartite Graph

Def. An undirected graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also a bipartite graph.

Obs. BFS and DFS naturally induce a tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

Obs. If BFS tree =DFS tree, then G is a tree.

- True: simple, undirected graph
- Not True: directed graph

Outline

- Graphs
- Connectivity and Graph Traversal
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- Topological Ordering
 - Applications: Word Ladder

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: for every $v \in V$ do
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \ \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- 11: **if** $d_u = 0$ **then** add u to S
- 12: if i < n then output "not a DAG"
- ullet S can be represented using a queue or a stack
- Running time = O(n+m)

${\cal S}$ as a Queue or a Stack

DS	Queue	Stack
Initialization	$head \leftarrow 1, tail \leftarrow 0$	$top \leftarrow 0$
Non-Empty?	$head \le tail$	top > 0
Add(v)	$tail \leftarrow tail + 1 \\ S[tail] \leftarrow v$	$top \leftarrow top + 1 \\ S[top] \leftarrow v$
Retrieve v	$v \leftarrow S[head] \\ head \leftarrow head + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$

	a	b	c	d	e	f	g
degree	0	1	1	1	2	1	3

	a	b	c	d	e	\int	g
degree	0	1	1	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	1	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	1	1	3

	a	b	c	d	e	\int	g
degree	0	0	0	0	1	0	3

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

	a	b	c	d	e	\int	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Outline

- Graphs
- Connectivity and Graph Traversal
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- Topological Ordering
 - Applications: Word Ladder

Def. Word: A string formed by letters.

 $\mbox{\bf Def.}$ Adjacency words: Word A and B are adjacent if they differ in exactly one letter.

e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

 The objective is to make the change in the smallest number of steps, with each step involving changing a single letter of the word to create a new valid word.

Word Ladder Problem

Input: Two words S and T, a list of words $A = \{W_1, W_2, ..., W_k\}$.

Output: "The smallest word ladder" if we can change S to T by moving between adjacency words in $A \cup \{S, T\}$; Otherwise, "No word ladder".

- \bullet S="a e f g h", T = "d l m i h"
- $W_1=$ "a e f i h", $W_2=$ "a e m g h", $W_3=$ "d l f i h" $W_4=$ "s e f i h", $W_5=$ "a d f g h", $W_6=$ "d e m i h" $W_7=$ "d e f i h", $W_8=$ "d e m g h", $W_9=$ "s e m i h"

- \bullet S="a e f g h", T = "d l m i h"
- $W_1=$ "a e f i h", $W_2=$ "a e m g h", $W_3=$ "d l f i h" $W_4=$ "s e f i h", $W_5=$ "a d f g h", $W_6=$ "d e m i h" $W_7=$ "d e f i h", $W_8=$ "d e m g h", $W_9=$ "s e m i h"

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.
- ullet Hints: Given vertex v, check its nearest neighbor.