CSE 431/531: Algorithm Analysis and Design (Spring 2024) Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

• However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

• However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

Design efficient algorithms to solve problems

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

- Design efficient algorithms to solve problems
- Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

- Greedy Algorithms: shortest path problem
- Divide and Conquer: merge-sort, binary search
- Dynamic Programming: shortest path problem, Fibonacci number

Greedy algorithm properties

• Greedy algorithms are often for optimization problems.

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.
- Hard to see correctness. Mostly, it is not correct. E.g. $\min f(x)$

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.

Outline

1 Toy Example: Box Packing

- 2 Interval Scheduling
 - Interval Partitioning

Offline Caching Heap: Concrete Data Structure for Priority Queue

- 4 Data Compression and Huffman Code
- 5 Summary
- 6 Exercise Problems

Box Packing

Input: n boxes of capacities c_1, c_2, \cdots, c_n m items of sizes s_1, s_2, \cdots, s_m Can put at most 1 item in a box Item j can be put into box i if $s_j \leq c_i$ Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16

Box Packing

Input: *n* boxes of capacities c_1, c_2, \dots, c_n *m* items of sizes s_1, s_2, \dots, s_m Can put at most 1 item in a box Item *j* can be put into box *i* if $s_j \leq c_i$ Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 16 \rightarrow 25$

Box Packing

Input: *n* boxes of capacities c_1, c_2, \dots, c_n *m* items of sizes s_1, s_2, \dots, s_m Can put at most 1 item in a box Item *j* can be put into box *i* if $s_j \leq c_i$ Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 16 \rightarrow 25$
- Can put 4 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25, 16 \rightarrow 17$

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

• Q: Take box 1. Which item should we put in box 1?

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

• Intuition: putting the item gives us the easiest residual problem.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
- formal proof via exchanging argument:

Proof.

• Let j =largest item that box 1 can hold.

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in $S\colon$

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in $S{:}$

• $s_{j'} \leq s_j$, and swapping gives another solution S'

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in $S\colon$

- $s_{j'} \leq s_j$, and swapping gives another solution S'
- S' is also an optimum solution. In S', j is put into Box 1.
• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: we decided to put Item *j* into Box 1, and the remaining instance is obtained by removing Item *j* and Box 1.

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow$ the largest item in T that can be put into box i
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Why "Safety" + "Self-reduce" \implies Optimality?

- Let BP(B,T) denote a box-packing instance.
- $\phi(1, 2, ..., m) \mapsto \{1, 2, ..., n, \text{NULL}\}$ denote packing strategy. e.g., $\phi(2) = 3$ means item 2 is put into box 3.
- $val(\phi) :=$ the number of items packed by ϕ .
- ϕ_g : the packing strategy obtained by greedy algorithm.

Proof.

- Base case: When |B| = 1 or |T| = 1.
- Inductive case: (Hypothesis) Assume Greedy alg solves BP(B',T') optimally for |B'| = n 1 and |T'| = m 1.

Why "Safety" + "Self-reduce" \implies Optimality?

Proof.

- (Induction) Wlog, let π be the optimal solution matches our greedy sol on BP(B,T), saying $\pi(j) = 1$.
- By self-reduce: $\mathsf{BP}(B \setminus \{1\}, T \setminus \{j\})$ is a smaller BP instance.
- π and ϕ_g onto $\mathsf{BP}(B \setminus \{1\}, T \setminus \{j\})$, denoted as π' and ϕ'_g .
- By Inductive hypothesis, ϕ_g' is the optimal sol for ${\rm BP}(B\setminus\{1\},T\setminus\{j\}).$
- $\bullet \ \operatorname{val}(\pi) \geq \operatorname{val}(\phi_g) = 1 + \operatorname{val}(\phi_g') \geq 1 + \operatorname{val}(\pi') = \operatorname{val}(\pi).$

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Running time

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Running time

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$
- With sorted item-sizes and box-capacities, running time is $O(\max\{n,m\}).$

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

• Greedy strategy is safe: we will not miss the optimum solution

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy stretegy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is "safe" if there is always an optimum solution that is "consistent" with the decision made according to the strategy.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- $\bullet\,$ if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- $\bullet\,$ if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
- The procedure is not a part of the algorithm.

Outline

Toy Example: Box Packing

Interval Scheduling Interval Partitioning

3 Offline Caching

- Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- 5 Summary

6 Exercise Problems

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

• Which of the following strategies are safe?

- Which of the following strategies are safe?
- Schedule the job with the smallest size?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!
- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

 $\bullet\,$ Take an arbitrary optimum solution S

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- Take an arbitrary optimum solution ${\cal S}$
- If it contains j, done

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- Take an arbitrary optimum solution ${\cal S}$
- If it contains j, done

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- $\bullet\,$ Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in ${\cal S}$ with j to obtain another optimum schedule ${\cal S}'.$

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- $\bullet\,$ Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

