
CSE 431/531: Algorithm Analysis and Design (Spring 2024)

Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design

1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design
1 Design e�cient algorithms to solve problems

2 Design more e�cient algorithms to solve problems

2/97

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

f(n) is a polynomial if f(n) = O(nk) for some constant k > 0.

convention: polynomial time = e�cient

Goals of algorithm design
1 Design e�cient algorithms to solve problems
2 Design more e�cient algorithms to solve problems

3/97

Common Paradigms for Algorithm Design

Greedy Algorithms: shortest path problem

Divide and Conquer: merge-sort, binary search

Dynamic Programming: shortest path problem, Fibonacci number

4/97

Greedy algorithm properties

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. min f(x)

4/97

Greedy algorithm properties

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. min f(x)

4/97

Greedy algorithm properties

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. min f(x)

4/97

Greedy algorithm properties

Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. min f(x)

5/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

(key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

(usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

5/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

(key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

(usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

5/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

5/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

6/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

7/97

Box Packing
Input: n boxes of capacities c1, c2, · · · , cn

m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj  ci
Output: A way to put as many items as possible in the boxes.

Example:
Box capacities: 60, 40, 25, 17, 12

Item sizes: 45, 41, 20, 19, 16

Can put 3 items in boxes: 45! 60, 20! 40, 16! 25

Can put 4 items in boxes: 45! 60, 20! 40, 19! 25, 16! 17

7/97

Box Packing
Input: n boxes of capacities c1, c2, · · · , cn

m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj  ci
Output: A way to put as many items as possible in the boxes.

Example:
Box capacities: 60, 40, 25, 17, 12

Item sizes: 45, 41, 20, 19, 16

Can put 3 items in boxes: 45! 60, 20! 40, 16! 25

Can put 4 items in boxes: 45! 60, 20! 40, 19! 25, 16! 17

7/97

Box Packing
Input: n boxes of capacities c1, c2, · · · , cn

m items of sizes s1, s2, · · · , sm
Can put at most 1 item in a box

Item j can be put into box i if sj  ci
Output: A way to put as many items as possible in the boxes.

Example:
Box capacities: 60, 40, 25, 17, 12

Item sizes: 45, 41, 20, 19, 16

Can put 3 items in boxes: 45! 60, 20! 40, 16! 25

Can put 4 items in boxes: 45! 60, 20! 40, 19! 25, 16! 17

8/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing

Q: Take box 1. Which item should we put in box 1?

A: The item of the largest size that can be put into the box.

8/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
Q: Take box 1. Which item should we put in box 1?

A: The item of the largest size that can be put into the box.

8/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
Q: Take box 1. Which item should we put in box 1?

A: The item of the largest size that can be put into the box.

9/97

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Intuition: putting the item gives us the easiest residual problem.

formal proof via exchanging argument:

9/97

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Intuition: putting the item gives us the easiest residual problem.

formal proof via exchanging argument:

9/97

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Intuition: putting the item gives us the easiest residual problem.

formal proof via exchanging argument:

9/97

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Intuition: putting the item gives us the easiest residual problem.

formal proof via exchanging argument:

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.

Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:
box 1

item j

· · · · · ·S:

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:
box 1

item j

· · · · · ·S0:

item j0

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

10/97

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
Let j = largest item that box 1 can hold.

Take any optimum solution S. If j is put into Box 1 in S, done.

Otherwise, assume this is what happens in S:
box 1

item j

· · · · · ·S0:

item j0

sj0  sj, and swapping gives another solution S 0

S 0 is also an optimum solution. In S 0, j is put into Box 1.

11/97

Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item j and Box 1.

11/97

Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item j and Box 1.

11/97

Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item j and Box 1.

12/97

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: T {1, 2, 3, · · · ,m}
2: for i 1 to n do

3: if some item in T can be put into box i then
4: j the largest item in T that can be put into box i
5: print(“put item j in box i”)
6: T T \ {j}

13/97

Why “Safety” +“Self-reduce” =) Optimality?

Let BP(B, T) denote a box-packing instance.

�(1, 2, ...,m) 7! {1, 2, ..., n,NULL} denote packing strategy. e.g.,
�(2) = 3 means item 2 is put into box 3.

val(�) := the number of items packed by �.

�g: the packing strategy obtained by greedy algorithm.

Proof.
Base case: When |B| = 1 or |T | = 1.

Inductive case: (Hypothesis) Assume Greedy alg solves BP(B0, T 0)
optimally for |B0| = n� 1 and |T 0| = m� 1.

14/97

Why “Safety” +“Self-reduce” =) Optimality?

Proof.
(Induction) Wlog, let ⇡ be the optimal solution matches our
greedy sol on BP(B, T), saying ⇡(j) = 1.

By self-reduce: BP(B \ {1}, T \ {j}) is a smaller BP instance.

⇡ and �g onto BP(B \ {1}, T \ {j}), denoted as ⇡0 and �0
g.

By Inductive hypothesis, �0
g is the optimal sol for

BP(B \ {1}, T \ {j}).
val(⇡) � val(�g) = 1+ val(�0

g) � 1+val(⇡0) =val(⇡).

15/97

Running time

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: T {1, 2, 3, · · · ,m}
2: for i 1 to n do

3: if some item in T can be put into box i then
4: j the largest item in T that can be put into box i
5: print(“put item j in box i”)
6: T T \ {j}

16/97

Running time

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: T {1, 2, 3, · · · ,m}
2: for i 1 to n do

3: if some item in T can be put into box i then
4: j the largest item in T that can be put into box i
5: print(“put item j in box i”)
6: T T \ {j}

With sorted item-sizes and box-capacities, running time is
O(max{n,m}).

16/97

Running time

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: T {1, 2, 3, · · · ,m}
2: for i 1 to n do

3: if some item in T can be put into box i then
4: j the largest item in T that can be put into box i
5: print(“put item j in box i”)
6: T T \ {j}

With sorted item-sizes and box-capacities, running time is
O(max{n,m}).

17/97

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

Greedy strategy is safe: we will not miss the optimum solution

Greedy stretegy is not safe: we will miss the optimum solution for
some instance, since the choices we made are irrevocable.

17/97

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

Greedy strategy is safe: we will not miss the optimum solution

Greedy stretegy is not safe: we will miss the optimum solution for
some instance, since the choices we made are irrevocable.

17/97

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

Greedy strategy is safe: we will not miss the optimum solution

Greedy stretegy is not safe: we will miss the optimum solution for
some instance, since the choices we made are irrevocable.

18/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Def. A strategy is “safe” if there is always an optimum solution that
is “consistent” with the decision made according to the strategy.

18/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Def. A strategy is “safe” if there is always an optimum solution that
is “consistent” with the decision made according to the strategy.

18/97

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe”

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Def. A strategy is “safe” if there is always an optimum solution that
is “consistent” with the decision made according to the strategy.

19/97

Exchange argument: Proof of Safety of a Strategy

let S be an arbitrary optimum solution.

if S is consistent with the greedy choice, done.

otherwise, show that it can be modified to another optimum
solution S 0 that is consistent with the choice.

The procedure is not a part of the algorithm.

19/97

Exchange argument: Proof of Safety of a Strategy

let S be an arbitrary optimum solution.

if S is consistent with the greedy choice, done.

otherwise, show that it can be modified to another optimum
solution S 0 that is consistent with the choice.

The procedure is not a part of the algorithm.

20/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

21/97

Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

21/97

Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: A maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size?

No!

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size?

No!

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

0 1 2 3 4 5 6 7 8 9

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

0 1 2 3 4 5 6 7 8 9

22/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

0 1 2 3 4 5 6 7 8 9

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?

No!

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?

No!

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?
No!

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 3 4 5 6 7 8 9

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 3 4 5 6 7 8 9

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 3 4 5 6 7 8 9

23/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!

0 1 2 3 4 5 6 7 8 9

24/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?
No!

Schedule the job with the earliest finish time?

Yes!

24/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?
No!

Schedule the job with the earliest finish time?

Yes!

24/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

Schedule the job with the smallest size? No!

Schedule the job conflicting with smallest number of other jobs?
No!

Schedule the job with the earliest finish time? Yes!

24/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!
Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9

24/97

Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
Schedule the job with the smallest size? No!
Schedule the job conflicting with smallest number of other jobs?
No!
Schedule the job with the earliest finish time? Yes!

0 1 2 3 4 5 6 7 8 9

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.

Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.
Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

S:

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.
Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

S:

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.
Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

S:

j:

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.
Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

S:

j:

25/97

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish
time is scheduled.

Proof.
Take an arbitrary optimum solution S

If it contains j, done

Otherwise, replace the first job in S with j to obtain another
optimum schedule S 0.

S:

j:

S 0:

