Greedy Algorithms

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
Def. In an **optimization problem**, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in **exponential** time, as the number of potential solutions is often exponentially large.
Def. In an *optimization problem*, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a polynomial if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
- convention: polynomial time = efficient

Goals of algorithm design
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- Convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a polynomial if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
- convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
2. Design more efficient algorithms to solve problems
Common Paradigms for Algorithm Design

- Greedy Algorithms: shortest path problem
- Divide and Conquer: merge-sort, binary search
- Dynamic Programming: shortest path problem, Fibonacci number
Greedy algorithm properties

Greedy algorithms are often for optimization problems. They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time. Hard to see correctness. Mostly, it is not correct. E.g.
Greedy algorithm properties

- Greedy algorithms are often for optimization problems.
Greedy algorithm properties

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.
Greedy algorithm properties

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.
- Hard to see correctness. Mostly, it is not correct. E.g. \(\min f(x) \)
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Def. A strategy is **safe** if there is always an optimum solution that agrees with the decision made according to the strategy.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe” (**key**)
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (**usually easy**.)
Greedy Algorithm
- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm
- **Safety:** Prove that the reasonable strategy is “safe” (*key*)
- **Self-reduce:** Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (*usually easy*)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
 - Interval Partitioning
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
6. Exercise Problems
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)

\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)

Can put at most 1 item in a box

Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
Box Packing

Input: n boxes of capacities c_1, c_2, \cdots, c_n

m items of sizes s_1, s_2, \cdots, s_m

Can put at most 1 item in a box

Item j can be put into box i if $s_j \leq c_i$

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: 45 \rightarrow 60, 20 \rightarrow 40, 16 \rightarrow 25
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)

\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)

Can put at most 1 item in a box

Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: 45 → 60, 20 → 40, 16 → 25
- Can put 4 items in boxes: 45 → 60, 20 → 40, 19 → 25, 16 → 17
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an \textit{irrevocable} decision using a “reasonable” strategy

Q: Take box 1. Which item should we put in box 1?
A: The item of the largest size that can be put into the box.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irretrievable decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.
Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Analysis of Greedy Algorithm

- **Safety:** Prove that the reasonable strategy is “safe”
- **Self-reduce:** Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.
Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- **Intuition**: putting the item gives us the **easiest residual problem**.
- **formal proof via exchanging argument**:
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j =$ largest item that box 1 can hold.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.
- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j = \text{largest item that box 1 can hold}$.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

\begin{align*}
S: & \quad \text{box 1} \\
& \quad \text{item } j \\
& \quad \cdots \\
\end{align*}
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

```
box 1
S':

S:  item j'    item j
```

- $s_{j'} \leq s_j$, and swapping gives another solution S'
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j = \text{largest item that box 1 can hold.}$
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

 ![Diagram](image)

 - $s_{j'} \leq s_j$, and swapping gives another solution S'
 - S' is also an optimum solution. In S', j is put into Box 1. □
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- **Trivial**: we decided to put Item j into Box 1, and the remaining instance is obtained by removing Item j and Box 1.
Generic Greedy Algorithm

1. **while** the instance is non-trivial **do**
2. make the choice using the greedy strategy
3. reduce the instance

Greedy Algorithm for Box Packing

1. \(T \leftarrow \{1, 2, 3, \cdots, m\} \)
2. **for** \(i \leftarrow 1 \) **to** \(n \) **do**
3. **if** some item in \(T \) can be put into box \(i \) **then**
4. \(j \leftarrow \) the largest item in \(T \) that can be put into box \(i \)
5. print(“put item \(j \) in box \(i \)”)
6. \(T \leftarrow T \setminus \{j\} \)
Why “Safety” + “Self-reduce” $$\implies$$ Optimality?

- Let $\text{BP}(B, T)$ denote a box-packing instance.
- $\phi(1, 2, \ldots, m) \mapsto \{1, 2, \ldots, n, \text{NULL}\}$ denote packing strategy. e.g., $\phi(2) = 3$ means item 2 is put into box 3.
- $\text{val}(\phi) :=$ the number of items packed by ϕ.
- ϕ_g: the packing strategy obtained by greedy algorithm.

Proof.

- **Base case:** When $|B| = 1$ or $|T| = 1$.
- **Inductive case:** (Hypothesis) Assume Greedy alg solves $\text{BP}(B', T')$ optimally for $|B'| = n - 1$ and $|T'| = m - 1$.
Why “Safety” + “Self-reduce” \implies Optimality?

Proof.

(Induction) Wlog, let π be the optimal solution matches our greedy sol on $\text{BP}(B, T)$, saying $\pi(j) = 1$.

By self-reduce: $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$ is a smaller BP instance.

π and ϕ_g onto $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$, denoted as π' and ϕ'_g.

By Inductive hypothesis, ϕ'_g is the optimal sol for $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$.

$\text{val}(\pi) \geq \text{val}(\phi_g) = 1 + \text{val}(\phi'_g) \geq 1 + \text{val}(\pi') = \text{val}(\pi)$.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: $T \leftarrow \{1, 2, 3, \cdots, m\}$
2: for $i \leftarrow 1$ to n do
3: if some item in T can be put into box i then
4: $j \leftarrow$ the largest item in T that can be put into box i
5: print(“put item j in box i”)
6: $T \leftarrow T \setminus \{j\}$
Running time

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: \(T \leftarrow \{1, 2, 3, \ldots, m\} \)
2: for \(i \leftarrow 1 \) to \(n \) do
3: if some item in \(T \) can be put into box \(i \) then
4: \(j \leftarrow \) the largest item in \(T \) that can be put into box \(i \)
5: print("put item \(j \) in box \(i \)")
6: \(T \leftarrow T \setminus \{j\} \)
Generic Greedy Algorithm

1. **while** the instance is non-trivial **do**
2. make the choice using the greedy strategy
3. reduce the instance

Greedy Algorithm for Box Packing

1. \(T \leftarrow \{1, 2, 3, \cdots, m\} \)
2. **for** \(i \leftarrow 1 \) to \(n \) **do**
3. \[\text{if some item in } T \text{ can be put into box } i \text{ then} \]
4. \[j \leftarrow \text{the largest item in } T \text{ that can be put into box } i \]
5. \[\text{print(“put item } j \text{ in box } i”)} \]
6. \[T \leftarrow T \setminus \{j\} \]

- With sorted item-sizes and box-capacities, running time is \(O(\max\{n, m\}) \).
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy strategy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an *irrevocable* decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is “safe” if there is always an optimum solution that is “consistent” with the decision made according to the strategy.
let S be an arbitrary optimum solution.

if S is consistent with the greedy choice, done.

otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
let S be an arbitrary optimum solution.
if S is consistent with the greedy choice, done.
otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.

The procedure is not a part of the algorithm.
Outline

1. Toy Example: Box Packing
2. Interval Scheduling
 - Interval Partitioning
3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
4. Data Compression and Huffman Code
5. Summary
6. Exercise Problems
Interval Scheduling

Input: \(n \) jobs, job \(i \) with start time \(s_i \) and finish time \(f_i \)

\(i \) and \(j \) are compatible if \([s_i, f_i)\) and \([s_j, f_j)\) are disjoint

Output: A maximum-size subset of mutually compatible jobs
Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs
Which of the following strategies are safe?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

![Diagram showing interval scheduling with jobs placed at different intervals.]
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!
Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

![Diagram showing intervals and scheduling]

0 1 2 3 4 5 6 7 8 9
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!

![Diagram of interval scheduling](image-url)
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
Lemma It is safe to schedule the job \(j \) with the earliest finish time: There is an optimum solution where the job \(j \) with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution \(S \)

\[S: \]
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done

S: [] [] [] []
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done

S: [] [] [] [] []

j: []
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

S:

j:

S:

j:

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.