CSE 431/531: Algorithm Analysis and Design (Spring 2024)

Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
v

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design

@ Design efficient algorithms to solve problems

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

© Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

@ Greedy Algorithms: shortest path problem
@ Divide and Conquer: merge-sort, binary search

@ Dynamic Programming: shortest path problem, Fibonacci number

Greedy algorithm properties

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

@ They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

@ They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

@ Hard to see correctness. Mostly, it is not correct. E.g. min f(z)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
e Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable
strategy

Analysis of Greedy Algorithm
e Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

o Toy Example: Box Packing

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 17, 12
@ ltem sizes: 45, 41, 20, 19, 16

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 17, 12
@ ltem sizes: 45, 41, 20, 19, 16

@ Can put 3 items in boxes: 45 — 60,20 — 40,16 — 25

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢,
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 17, 12
@ ltem sizes: 45, 41, 20, 19, 16

@ Can put 3 items in boxes: 45 — 60,20 — 40,16 — 25
e Can put 4 items in boxes: 45 — 60,20 — 40,19 — 25,16 — 17

v

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
o Q: Take box 1. Which item should we put in box 1?

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold. J

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

Lemma There is an optimum solution in which box 1 contains the

largest item it can hold.

Proof.

@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S

box 1

S

O O O

item 7

&

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

L4 N I I R P,

o0 O O

item 5/ item j

@ s < s;, and swapping gives another solution .5’

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

L4 N I I R P,

o0 O O

item 5/ item j

@ s < s;, and swapping gives another solution .5’

e S is also an optimum solution. In S’, j is put into Box 1.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
o Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
o Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

@ Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+ {1,2,3,--- ,m}
2: for i < 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in 7" that can be put into box i
print(“put item j in box ")
T T\ {j}

e & g2

Why “Safety” + “Self-reduce” = Optimality?
e Let BP(B,T) denote a box-packing instance.

e ¢(1,2,....,m)— {1,2,...,n,NULL} denote packing strategy. e.g.,

¢(2) = 3 means item 2 is put into box 3.
@ val(¢) := the number of items packed by ¢.
@ ¢, the packing strategy obtained by greedy algorithm.

Proof.
@ Base case: When |B|=1or |T| = 1.

@ Inductive case: (Hypothesis) Assume Greedy alg solves BP(B’, T")

optimally for |[B'| =n —1 and |T"| =m — 1.

O

v

Why “Safety” + “Self-reduce” = Optimality?
Proof.

@ (Induction) Wiog, let m be the optimal solution matches our
greedy sol on BP(B,T), saying 7(j) = 1.
o By self-reduce: BP(B\ {1},7"\ {j}) is a smaller BP instance.
e 7 and ¢, onto BP(B\ {1},7"\ {j}), denoted as 7' and ¢;,.
@ By Inductive hypothesis, ¢; is the optimal sol for
BP(B\ {1}, T\ {j})-
e val(m) > val(¢,) = 1+ val(¢;) > 1+val(zn') =val().

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+ {1,2,3,--- ,m}
2: for i <+ 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in 7" that can be put into box i
print(“put item j in box ")
T < T\{j}

e & g2

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+{1,2,3,--- ,m}
2: for i < 1 ton do
3 if some item in 1" can be put into box ¢ then
J < the largest item in T" that can be put into box ¢
print(“put item j in box ")
T < T\{j}

e & g2

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1. T+{1,2,3,--- ,m}

2: for i < 1 ton do

3 if some item in 1" can be put into box ¢ then

J < the largest item in T" that can be put into box ¢
print(“put item j in box ")

T T\ {j}

e & g2

@ With sorted item-sizes and box-capacities, running time is
O(max{n,m}).

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3 reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3 reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

o Greedy strategy is safe: we will not miss the optimum solution

Generic Greedy Algorithm
1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy
strategy is safe.

o Greedy strategy is safe: we will not miss the optimum solution

o Greedy stretegy is not safe: we will miss the optimum solution for
some instance, since the choices we made are irrevocable.

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Def. A strategy is “safe” if there is always an optimum solution that
is “consistent” with the decision made according to the strategy.

Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

@ let .S be an arbitrary optimum solution.
e if S is consistent with the greedy choice, done.

@ otherwise, show that it can be modified to another optimum
solution S’ that is consistent with the choice.

@ The procedure is not a part of the algorithm.

© Interval Scheduling
@ Interval Partitioning

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs

»
»

-1

—_
- N
-
T~
- ot

67 8 9

21/97

Interval Scheduling
Input: n jobs, job ¢ with start time s; and finish time f;
i and j are compatible if [s;, f;) and [s;, f;) are disjoint
Output: A maximum-size subset of mutually compatible jobs

8 9

[

[]

»
»

e
D
i b

01 2 3
T

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?

@ Schedule the job with the smallest size?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

‘ ‘

0 1 2 38 4 5 6 7 8
T [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

‘ ‘

01 2.3 45 6 7
|l;llll

8

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

‘ ‘

0 1 2 38 4 5 6 7 8
T [

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!
@ Schedule the job conflicting with smallest number of other jobs?

N0!0123456789=
R _ R
o T B
== =
== =
=
= =

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!
@ Schedule the job conflicting with smallest number of other jobs?

N0!0123456789=
R
o T B
== =
== =
=
= =

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!
@ Schedule the job conflicting with smallest number of other jobs?

N0!0123456789=
. =
-] ==
e
e
. . .

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!
@ Schedule the job conflicting with smallest number of other jobs?

H

N0!0123456789=
- Emm
-] ==
e
e
. . .

:

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time?

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
o 1 2 3 4 5 6 7T 8§ 9

»

- e
—

Greedy Algorithm for Interval Scheduling

@ Which of the following strategies are safe?
@ Schedule the job with the smallest size? No!

@ Schedule the job conflicting with smallest number of other jobs?
No!

@ Schedule the job with the earliest finish time? Yes!
o 1 2 3 4 5 6 7T 8§ 9

»

- e
—

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.

Proof.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.)

Proof.

@ Take an arbitrary optimum solution S

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.)

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.)

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.)

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in .S with j to obtain another
optimum schedule S’. O

S: I | | | | | [
;o

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time:
There is an optimum solution where the job j with the earliest finish

time is scheduled.)

Proof.

@ Take an arbitrary optimum solution S

e If it contains 7, done

@ Otherwise, replace the first job in .S with j to obtain another
optimum schedule S’. O

S: I | | | | | [
;o
SE | | | | [

