Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for every $u,v\in S$, we have $(u,v)\notin E$.

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

max-independent-set(G = (V, E))

- 1: $R \leftarrow \emptyset$
- 2: **for** every set $S \subseteq V$ **do**
- 3: $b \leftarrow \mathsf{true}$
- 4: **for** every $u, v \in S$ **do**
- 5: if $(u, v) \in E$ then $b \leftarrow$ false
- 6: if b and |S| > |R| then $R \leftarrow S$
- 7: return R

Running time = $O(2^n n^2)$.

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists


```
\mathsf{Hamiltonian}(G = (V, E))
```

```
1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: b \leftarrow true
3: for i \leftarrow 1 to n-1 do
4: if (p_i, p_{i+1}) \notin E then b \leftarrow false
5: if (p_n, p_1) \notin E then b \leftarrow false
6: if b then return (p_1, p_2, \cdots, p_n)
7: return "No Hamiltonian Cycle"
```

Running time = $O(n! \times n)$

$O(\log n)$ (Logarithmic) Running Time

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

$O(\log n)$ (Logarithmic) Running Time

Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

```
1: i \leftarrow 1, j \leftarrow n
```

2: while
$$i \leq j$$
 do

3:
$$k \leftarrow \lfloor (i+j)/2 \rfloor$$

4: if
$$A[k] = t$$
 return true

5: if
$$t < A[k]$$
 then $j \leftarrow k-1$ else $i \leftarrow k+1$

6: return false

Running time = $O(\log n)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $\bullet \ n = O(n^2)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $\bullet \ n \log n = O(n^2)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- \bullet $e^n = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- $e^n = O(n!)$
- \bullet $n! = O(n^n)$

Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
 - $O(n \log n) \subseteq O(n^{1.1})$. So, an $O(n \log n)$ -time algorithm is also a polynomial time algorithm.
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

Q: Does ignoring the leading constant cause any issues?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

Sometimes yes

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large n, algorithm with lower order running time beats algorithm with higher order running time.

CSE 431/531: Algorithm Analysis and Design (Spring 2024) Graph Basics

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

- Graphs
- 2 Connectivity and Graph Traversa
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- 4 Topological Ordering
 - Applications: Word Ladder

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
- ullet E: pairwise relationships among V;
 - \bullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ullet E: pairwise relationships among V;
 - ullet directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i,j) to denote the set $\{i,j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).

• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph: Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0							
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - ullet A is symmetric if graph is undirected

Representation of Graphs

- 1: 2 +3 6: 5 2: 1 +3 +4 +5 7: 3 +8
- 3: 1 5 7 8
- 4: 2-5 8: 3-7
- 5: 2→3→4→6

- Adjacency matrix
 - $n \times n$ matrix, A[u,v]=1 if $(u,v) \in E$ and A[u,v]=0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - ullet For every vertex v, there is a linked list containing all neighbors of v.

Representation of Graphs

1: 2 3 6: 5 7: 3 8 2: 1 3 4 5 8: 3 7 4: 2 5 d:(2,4,5,2,4,1,2,2)

5: 2 3 4 6

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbors of v.
 - When graph is static, can use array of variant-length arrays.

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v)\in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v) \in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}		

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}	O(n)	

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- ullet d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v)\in E$	O(1)	$O(d_u)$
time to list all neighbors of \boldsymbol{v}	O(n)	$O(d_v)$

Outline

- Graphs
- Connectivity and Graph Traversal
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- 4 Topological Ordering
 - Applications: Word Ladder

Input: graph G = (V, E), (using linked lists)

two vertices $s,t\in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)

Input: graph G = (V, E), (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Implementing BFS using a Queue

for all neighbors u of v do

if u is "unvisited" then

mark u as "visited"

```
BFS(s)

1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s

2: mark s as "visited" and all other vertices as "unvisited"

3: while head \leq tail do

4: v \leftarrow queue[head], head \leftarrow head + 1
```

 $tail \leftarrow tail + 1, queue[tail] = u$

• Running time: O(n+m).

5:

6:

7:

8:

Example of BFS via Queue

Example of BFS via Queue

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- ullet Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

$\mathsf{DFS}(s)$

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: **for** all neighbors u of v **do**
- 3: **if** u is unvisited **then** recursive-DFS(u)

Outline

- Graphs
- Connectivity and Graph Traversal
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- 4 Topological Ordering
 - Applications: Word Ladder

Path Graph (or Linear Graph)

Def. An undirected graph G=(V,E) is a path if the vertices can be listed in an order $\{v_1,v_2,...,v_n\}$ such that the edges are the $\{v_i,v_{i+1}\}$ where i=1,2,...,n-1.

• Path graphs are connected graphs.

Cycle Graph (or Circular Graph)

Def. An undirected graph G=(V,E) is a cycle if its vertices can be listed in an order $v_1,v_2,...,v_n$ such that the edges are the $\{v_i,v_{i+1}\}$ where i=1,2,...,n-1, plus the edge $\{v_n,v_1\}$.

• The degree of all vertices is 2.

Tree

Def. An undirected graph G=(V,E) is a tree if any two vertices are connected by exactly one path. Or the graph is a connected acyclic graph.

 Most important type of special graphs: most computational problems are easier to solve on trees or lines.

Complete Graph

Def. An undirected graph G=(V,E) is a complete graph if each pair of vertices is joined by an edge.

• A complete graph contains all possible edges.

Planar Graph

Def. An undirected graph G = (V, E) is a planar graph if its vertices and edges can be drawn in a plane such that no two of the edges intersect.

 Most computational problems have good solutions in a planar graph.

Directed Acyclic Graph (DAG)

Def. A directed graph G=(V,E) is a directed acyclic graph if it is a directed graph with no directed cycles

• DAG is equivalent to a partial ordering of nodes.

Bipartite Graph

Def. An undirected graph G=(V,E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u,v)\in E$, either $u\in L,v\in R$ or $v\in L,u\in R$.

