
77/86

Beyond Polynomial Time: 2n

Def. An independent set of a graph G = (V,E) is a subset S ✓ V

of vertices such that for every u, v 2 S, we have (u, v) /2 E.

77/86

Beyond Polynomial Time: 2n

Def. An independent set of a graph G = (V,E) is a subset S ✓ V

of vertices such that for every u, v 2 S, we have (u, v) /2 E.

77/86

Beyond Polynomial Time: 2n

Def. An independent set of a graph G = (V,E) is a subset S ✓ V

of vertices such that for every u, v 2 S, we have (u, v) /2 E.

78/86

Beyond Polynomial Time: 2n

Maximum Independent Set Problem
Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))
1: R ;
2: for every set S ✓ V do

3: b true
4: for every u, v 2 S do

5: if (u, v) 2 E then b false

6: if b and |S| > |R| then R S

7: return R

Running time = O(2nn2).

78/86

Beyond Polynomial Time: 2n

Maximum Independent Set Problem
Input: graph G = (V,E)

Output: the maximum independent set of G

max-independent-set(G = (V,E))
1: R ;
2: for every set S ✓ V do

3: b true
4: for every u, v 2 S do

5: if (u, v) 2 E then b false

6: if b and |S| > |R| then R S

7: return R

Running time = O(2nn2).

79/86

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

79/86

Beyond Polynomial Time: n!

Hamiltonian Cycle Problem
Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

80/86

Beyond Polynomial Time: n!

Hamiltonian(G = (V,E))
1: for every permutation (p1, p2, · · · , pn) of V do

2: b true
3: for i 1 to n� 1 do

4: if (pi, pi+1) /2 E then b false

5: if (pn, p1) /2 E then b false
6: if b then return (p1, p2, · · · , pn)
7: return “No Hamiltonian Cycle”

Running time = O(n!⇥ n)

81/86

O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

42 > 35

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

25 < 35

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

37 > 35

81/86

O(log n) (Logarithmic) Running Time

Binary search
Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

E.g, search 35 in the following array:

3 8 10 25 29 37 38 42 46 52 59 61 63 75 79

82/86

O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)
1: i 1, j n

2: while i  j do

3: k b(i+ j)/2c
4: if A[k] = t return true
5: if t < A[k] then j k � 1 else i k + 1

6: return false

Running time = O(log n)

82/86

O(log n) (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;

Output: whether t appears in A.

binary-search(A, n, t)
1: i 1, j n

2: while i  j do

3: k b(i+ j)/2c
4: if A[k] = t return true
5: if t < A[k] then j k � 1 else i k + 1

6: return false

Running time = O(log n)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n2)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n log n)

n log n = O(n2)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n log n)

n log n = O(n2)

n
2 = O(n!)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n log n)

n log n = O(n2)

n
2 = O(2n)

2n = O(n!)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n log n)

n log n = O(n2)

n
2 = O(2n)

2n = O(en)

e
n = O(n!)

83/86

Comparing the Orders

Sort the functions from smallest to largest asymptotically
log n, n log n, n, n!, n

2, 2n, e
n, n

n

log n = O(n)

n = O(n log n)

n log n = O(n2)

n
2 = O(2n)

2n = O(en)

e
n = O(n!)

n! = O(nn)

84/86

Terminologies

When we talk about upper bound on running time:

Logarithmic time: O(log n)

Linear time: O(n)

Quadratic time O(n2)

Cubic time O(n3)

Polynomial time: O(nk) for some constant k
O(n log n) ✓ O(n1.1). So, an O(n log n)-time algorithm is also a

polynomial time algorithm.

Exponential time: O(cn) for some c > 1

Sub-linear time: o(n)

Sub-quadratic time: o(n2)

85/86

Goal of Algorithm Design
Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)

85/86

Goal of Algorithm Design
Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)

85/86

Goal of Algorithm Design
Design algorithms to minimize the order of the running time.

Using asymptotic analysis allows us to ignore the leading
constants and lower order terms

Makes our life much easier! (E.g., the leading constant depends
on the implementation, complier and computer architecture of
computer.)

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

86/86

Q: Does ignoring the leading constant cause any issues?

e.g, how can we compare an algorithm with running time 0.1n2

with an algorithm with running time 1000n?

A:

Sometimes yes

However, when n is big enough, 1000n < 0.1n2

For “natural” algorithms, constants are not so big!

So, for reasonably large n, algorithm with lower order running
time beats algorithm with higher order running time.

CSE 431/531: Algorithm Analysis and Design (Spring 2024)

Graph Basics

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo

2/48

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder

3/48

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

4/48

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6
V : set of vertices (nodes);

V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;
(undirected) graphs: relationship is symmetric, E contains subsets of
size 2

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}

4/48

(Undirected) Graph G = (V,E)

1

2 3

4 5

7

8

6
V : set of vertices (nodes);
V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;
(undirected) graphs: relationship is symmetric, E contains subsets of
size 2
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8},
{4, 5}, {5, 6}, {7, 8}}

4/48

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6
V : set of vertices (nodes);
V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;
directed graphs: relationship is asymmetric, E contains ordered pairs

E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}

4/48

Directed Graph G = (V,E)

1

2 3

4 5

7

8

6
V : set of vertices (nodes);
V = {1, 2, 3, 4, 5, 6, 7, 8}

E: pairwise relationships among V ;
directed graphs: relationship is asymmetric, E contains ordered pairs
E = {(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8),
(4, 5), (5, 6), (6, 5), (8, 7)}

5/48

Abuse of Notations

For (undirected) graphs, we often use (i, j) to denote the set
{i, j}.
We call (i, j) an unordered pair; in this case (i, j) = (j, i).

1

2 3

4 5

7

8

6

E = {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8),
(4, 5), (5, 6), (7, 8)}

6/48

Social Network : Undirected

Transition Graph : Directed

Road Network : Directed or Undirected

Internet : Directed or Undirected

7/48

Representation of Graphs

1

2 3

4 5

7

8

6

0 1

1 0

1 0

1 1

1 1

0 1

0 0

0 0

0 0

1 0

0 0

0 0

1 0

1 0

1 1

0 0

0 1

0 0

1 1

0 0

0 0

0 0

1 0

1 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Adjacency matrix
n⇥ n matrix, A[u, v] = 1 if (u, v) 2 E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbors of v.

When graph is static, can use array of variant-length arrays.

7/48

Representation of Graphs

1

2 3

4 5

7

8

6

2 3

1 3

1 2

2 5

5

3 8

8

3 7

2 3

5 7

4 5

4 6

1:

2:

3:

4:

5:

6:

7:

8:

Adjacency matrix
n⇥ n matrix, A[u, v] = 1 if (u, v) 2 E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbors of v.

When graph is static, can use array of variant-length arrays.

7/48

Representation of Graphs

1

2 3

4 5

7

8

6

1:

2:

3:

4:

5:

6:

7:

8:

2 3

1 3 4 5

1 2 85 7

2 5

2 3 4 6

5

3 8

3 7

d : (2, 4, 5, 2, 4, 1, 2, 2)

Adjacency matrix
n⇥ n matrix, A[u, v] = 1 if (u, v) 2 E and A[u, v] = 0 otherwise
A is symmetric if graph is undirected

Linked lists
For every vertex v, there is a linked list containing all neighbors of v.
When graph is static, can use array of variant-length arrays.

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage

O(n2) O(m)

time to check (u, v) 2 E

O(1) O(du)

time to list all neighbors of v

O(n) O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2)

O(m)

time to check (u, v) 2 E

O(1) O(du)

time to list all neighbors of v

O(n) O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) 2 E

O(1) O(du)

time to list all neighbors of v

O(n) O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) 2 E O(1)

O(du)

time to list all neighbors of v

O(n) O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) 2 E O(1) O(du)

time to list all neighbors of v

O(n) O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) 2 E O(1) O(du)

time to list all neighbors of v O(n)

O(dv)

8/48

Comparison of Two Representations

Assuming we are dealing with undirected graphs

n: number of vertices

m: number of edges, assuming n� 1  m  n(n� 1)/2

dv: number of neighbors of v

Matrix Linked Lists

memory usage O(n2) O(m)

time to check (u, v) 2 E O(1) O(du)

time to list all neighbors of v O(n) O(dv)

9/48

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder

10/48

Connectivity Problem
Input: graph G = (V,E), (using linked lists)

two vertices s, t 2 V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)

10/48

Connectivity Problem
Input: graph G = (V,E), (using linked lists)

two vertices s, t 2 V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t

Breadth-First Search (BFS)
Depth-First Search (DFS)

10/48

Connectivity Problem
Input: graph G = (V,E), (using linked lists)

two vertices s, t 2 V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t
Breadth-First Search (BFS)

Depth-First Search (DFS)

10/48

Connectivity Problem
Input: graph G = (V,E), (using linked lists)

two vertices s, t 2 V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t
Breadth-First Search (BFS)
Depth-First Search (DFS)

11/48

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

11/48

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/48

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/48

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

11/48

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

12/48

Implementing BFS using a Queue

BFS(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head  tail do

4: v queue[head], head head+ 1
5: for all neighbors u of v do

6: if u is “unvisited” then

7: tail tail + 1, queue[tail] = u

8: mark u as “visited”

Running time: O(n+m).

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

1

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

1

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

21

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 31

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 31

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 41

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 4 51

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 51

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 71

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 7 81

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 81

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 81

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

13/48

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

14/48

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/48

Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then recursive-DFS(u)

16/48

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder

17/48

Path Graph (or Linear Graph)

Def. An undirected graph
G = (V,E) is a path if the
vertices can be listed in an order
{v1, v2, ..., vn} such that the edges
are the {vi, vi+1} where
i = 1, 2, ..., n� 1.

Path graphs are connected graphs.

18/48

Cycle Graph (or Circular Graph)

Def. An undirected graph
G = (V,E) is a cycle if its vertices
can be listed in an order
v1, v2, ..., vn such that the edges
are the {vi, vi+1} where
i = 1, 2, ..., n� 1, plus the edge
{vn, v1}.

The degree of all vertices is 2.

19/48

Tree

Def. An undirected graph
G = (V,E) is a tree if any two
vertices are connected by exactly
one path. Or the graph is a
connected acyclic graph.

Most important type of special graphs: most computational
problems are easier to solve on trees or lines.

20/48

Complete Graph

Def. An undirected graph
G = (V,E) is a complete graph if
each pair of vertices is joined by
an edge.

A complete graph contains all possible edges.

21/48

Planar Graph

Def. An undirected graph
G = (V,E) is a planar graph if its
vertices and edges can be drawn in
a plane such that no two of the
edges intersect.

Most computational problems have good solutions in a planar
graph.

22/48

Directed Acyclic Graph (DAG)

Def. A directed graph
G = (V,E) is a directed acyclic
graph if it is a directed graph with
no directed cycles

DAG is equivalent to a partial ordering of nodes.

23/48

Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

