CSE 431/531: Algorithm Analysis and Design (Spring 2024) Dynamic Programming

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer

- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Recall: Computing the *n*-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

$\mathsf{Fib}(n)$

- 1: $F[0] \leftarrow 0$
- $\mathbf{2:}\ F[1] \gets \mathbf{1}$
- 3: for $i \leftarrow 2$ to n do
- $\textbf{4:} \qquad F[i] \leftarrow F[i-1] + F[i-2]$
- 5: return F[n]

Recall: Computing the *n*-th Fibonacci Number

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

$\mathsf{Fib}(n)$

1: $F[0] \leftarrow 0$

2:
$$F[1] \leftarrow 1$$

3: for
$$i \leftarrow 2$$
 to n do

 $4: \qquad F[i] \leftarrow F[i-1] + F[i-2]$

5: return F[n]

• Store each F[i] for future use.

Outline

- Weighted Interval Scheduling
- 2 Subset Sum Problem
- 3 Knapsack Problem
- Longest Common Subsequence
 Longest Common Subsequence in Linear Space
- 5 Shortest Paths in Directed Acyclic Graphs
- 6 Matrix Chain Multiplication
- 🕜 Optimum Binary Search Tree
- 8 Summary
- 9 Summary of Studies Until Nov 1st

Recall: Interval Schduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint **Output:** a maximum-size subset of mutually compatible jobs

Recall: Interval Schduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint **Output:** a maximum-size subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i each job has a weight (or value) $v_i > 0$

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: a maximum-weight subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i each job has a weight (or value) $v_i > 0$

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: a maximum-weight subset of mutually compatible jobs

