CSE 431/531: Algorithm Analysis and Design (Spring 2024) Dynamic Programming

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

- Make a greedy choice
- Prove that the greedy choice is safe
- Reduce the problem to a sub-problem and solve it iteratively
- Usually for optimization problems

Divide-and-conquer

- Break a problem into many independent sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming

- Break up a problem into many overlapping sub-problems
- Build solutions for larger and larger sub-problems
- Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89, \cdots$

$\operatorname{Fib}(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

Recall: Computing the n-th Fibonacci Number

- $F_{0}=0, F_{1}=1$
- $F_{n}=F_{n-1}+F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89, \cdots$

$\operatorname{Fib}(n)$

1: $F[0] \leftarrow 0$
2: $F[1] \leftarrow 1$
3: for $i \leftarrow 2$ to n do
4: $\quad F[i] \leftarrow F[i-1]+F[i-2]$
5: return $F[n]$

- Store each $F[i]$ for future use.

Outline

(1) Weighted Interval Scheduling
(2) Subset Sum Problem
(3) Knapsack Problem
4. Longest Common Subsequence

- Longest Common Subsequence in Linear Space
(5) Shortest Paths in Directed Acyclic Graphs

6) Matrix Chain Multiplication
(7) Optimum Binary Search Tree
(8) Summary
(9) Summary of Studies Until Nov 1st

Recall: Interval Schduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-size subset of mutually compatible jobs

Recall: Interval Schduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-size subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
each job has a weight (or value) $v_{i}>0$
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-weight subset of mutually compatible jobs

Weighted Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i}
each job has a weight (or value) $v_{i}>0$
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: a maximum-weight subset of mutually compatible jobs

