Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- $f[v]$ is always the length of some path from s to v

Bellman-Ford Algorithm

- After iteration ℓ :
length of shortest $s-v$ path
$\leq f[v]$
\leq length of shortest s - v path using at most ℓ edges
- Assuming there are no negative cycles:
length of shortest $s-v$ path
$=$ length of shortest $s-v$ path using at most $n-1$ edges
- So, assuming there are no negative cycles, after iteration $n-1$:

$$
f[v]=\text { length of shortest } s-v \text { path }
$$

- order in which we consider edges:

$$
\left.\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & \infty & \infty & \infty \\
\hline
\end{array}
$$

- order in which we consider edges:

$$
(s, a),(s, b),(a, b),(a, c),(b, d)
$$

$$
(c, d),(d, a)
$$

vertices	s	a	b	c	d
f	0	∞	∞	∞	∞

- order in which we consider edges:

$$
(s, a),(s, b),(a, b),(a, c),(b, d)
$$

$$
(c, d),(d, a)
$$

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \\
& (c, d),(d, a)
\end{aligned}
$$

vertices	s	a	b	c	d
f	0	6	∞	∞	∞

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \\
& (c, d),(d, a)
\end{aligned}
$$

vertices	s	a	b	c	d
f	0	6	7	∞	∞

- order in which we consider edges:

$$
\left.\left.\begin{array}{l}
\begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
\text { vertices } \\
\hline f
\end{array} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 6 & 7 & \infty
\end{array}\right) \infty
$$

- order in which we consider edges:

$$
\left.\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned} \right\rvert\, \begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 6 & 7 & \infty \\
\infty
\end{array}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\left.\left.\begin{array}{l}
\begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
\text { vertices } \\
\hline f
\end{array} \right\rvert\, \begin{array}{c|c|c|c|c}
& a & b & c & d \\
\hline f & 0 & 6 & 7 & 2
\end{array}\right) \infty
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& \begin{array}{l}
(s, a),(s, b),(a, b),(a, c),(b, d), \\
(c, d),(d, a)
\end{array} \\
& \text { vertices } \\
& \hline f
\end{aligned}\left|\begin{array}{c|c|c|c|c}
\\
\hline f & 0 & 2 & 7 & 2
\end{array}\right| 4
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: $0,2,7,-2,4$
- order in which we consider edges:

$$
\begin{aligned}
& (s, a),(s, b),(a, b),(a, c),(b, d) \text {, } \\
& (c, d),(d, a)
\end{aligned}
$$

- end of iteration 1: $0,2,7,2,4$
- end of iteration 2: $0,2,7,-2,4$
- end of iteration 3: 0, 2, 7, -2, 4
- order in which we consider edges:
 $(s, a),(s, b),(a, b),(a, c),(b, d)$, $(c, d),(d, a)$

vertices	s	a	b	c	d
f	0	2	7	-2	4

- end of iteration 1: $0,2,7,2,4$
- end of iteration 2: $0,2,7,-2,4$
- end of iteration 3: $0,2,7,-2,4$
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: \quad updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $f[v] \leftarrow f[u]+w(u, v)$
7: updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $\quad f[v] \leftarrow f[u]+w(u, v), \pi[v] \leftarrow u$
7: \quad updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to n do
3: \quad updated \leftarrow false
4: \quad for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6: $\quad f[v] \leftarrow f[u]+w(u, v), \pi[v] \leftarrow u$
7: \quad updated \leftarrow true
8: if not updated, then return f
9: output "negative cycle exists"

- $\pi[v]$: the parent of v in the shortest path tree
- Running time $=O(n m)$

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$
1: for every starting point $s \in V$ do
2: run Bellman-Ford (G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph $G=(V, E)$,

$$
w: E \rightarrow \mathbb{R} \text { (can be negative) }
$$

Output: shortest path from u to v for every $u, v \in V$
1: for every starting point $s \in V$ do
2: run Bellman-Ford (G, w, s)

- Running time $=O\left(n^{2} m\right)$

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U/D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s

Design a Dynamic Programming Algorithm

- It is convenient to assume $V=\{1,2,3, \cdots, n\}$
- For simplicity, extend the w values to non-edges:

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- First try: $f[i, j]$ is length of shortest path from i to j
- Issue: do not know in which order we compute $f[i, j]$'s
- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

Example for Definition of $f^{k}[i, j]^{\prime} s$

$$
\begin{array}{lr}
f^{0}[1,4]=\infty & \\
f^{1}[1,4]=\infty & \\
f^{2}[1,4]=140 & (1 \rightarrow 2 \rightarrow 4) \\
f^{3}[1,4]=90 & (1 \rightarrow 3 \rightarrow 2 \rightarrow 4) \\
f^{4}[1,4]=90 & (1 \rightarrow 3 \rightarrow 2 \rightarrow 4) \\
f^{5}[1,4]=60 & (1 \rightarrow 3 \rightarrow 5 \rightarrow 4)
\end{array}
$$

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
f^{k}[i, j]=\{
$$

$$
\begin{aligned}
k & =0 \\
k & =1,2, \cdots, n
\end{aligned}
$$

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
f^{k}[i, j]=\left\{\begin{array}{l}
w(i, j) \\
\end{array}\right.
$$

$$
\begin{aligned}
k & =0 \\
k & =1,2, \cdots, n
\end{aligned}
$$

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
f^{k}[i, j]=\left\{\begin{array}{l}
w(i, j) \\
\min \{
\end{array}\right.
$$

$$
\begin{aligned}
& k=0 \\
& k=1,2, \cdots, n
\end{aligned}
$$

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
f^{k}[i, j]=\left\{\begin{array}{ll}
w(i, j) & k=0 \\
\min \{ & f^{k-1}[i, j]
\end{array} \quad k=1,2, \cdots, n\right.
$$

$$
w(i, j)= \begin{cases}0 & i=j \\ \text { weight of edge }(i, j) & i \neq j,(i, j) \in E \\ \infty & i \neq j,(i, j) \notin E\end{cases}
$$

- $f^{k}[i, j]$: length of shortest path from i to j that only uses vertices $\{1,2,3, \cdots, k\}$ as intermediate vertices

$$
f^{k}[i, j]=\left\{\begin{array}{cl}
w(i, j) & k=0 \\
\min \left\{\begin{array}{c}
f^{k-1}[i, j] \\
f^{k-1}[i, k]+f^{k-1}[k, j]
\end{array}\right. & k=1,2, \cdots, n
\end{array}\right.
$$

Floyd-Warshall(G, w)

1: $f^{0} \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: \quad copy $f^{k-1} \rightarrow f^{k}$
4: \quad for $i \leftarrow 1$ to n do

$$
\begin{array}{ll}
\text { 5: } & \text { for } j \leftarrow 1 \text { to } n \text { do } \\
\text { 6: } & \text { if } f^{k-1}[i, k]+f^{k-1}[k, j]<f^{k}[i, j] \text { then } \\
\text { 7: } & f^{k}[i, j] \leftarrow f^{k-1}[i, k]+f^{k-1}[k, j]
\end{array}
$$

Floyd-Warshall (G, w)
1: $f^{\text {old }} \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for $i \leftarrow 1$ to n do
5: \quad for $j \leftarrow 1$ to n do
6:
if $f^{\text {old }}[i, k]+f^{\text {old }}[k, j]<f^{\text {new }}[i, j]$ then
7:

$$
f^{\text {new }}[i, j] \leftarrow f^{\text {old d }}[i, k]+f^{\text {old }}[k, j]
$$

Floyd-Warshall (G, w)
1: $f^{\text {old }} \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for $i \leftarrow 1$ to n do
5: \quad for $j \leftarrow 1$ to n do
6:
if $f^{\text {old }}[i, k]+f^{\text {old }}[k, j]<f^{\text {new }}[i, j]$ then
7:

$$
f^{\text {new }}[i, j] \leftarrow f^{\text {old }}[i, k]+f^{\text {old }}[k, j]
$$

Floyd-Warshall(G, w)

1: $f \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: \quad copy $f \rightarrow f$
4: \quad for $i \leftarrow 1$ to n do
5: \quad for $j \leftarrow 1$ to n do
6 : if $f[i, k]+f[k, j]<f[i, j]$ then
7:

$$
f[i, j] \leftarrow f[i, k]+f[k, j]
$$

Floyd-Warshall (G, w)

1: $f \leftarrow w$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5: \quad if $f[i, k]+f[k, j]<f[i, j]$ then
6:

$$
f[i, j] \leftarrow f[i, k]+f[k, j]
$$

Floyd-Warshall (G, w)

1: $f \leftarrow w$

2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5:
6: if $f[i, k]+f[k, j]<f[i, j]$ then $f[i, j] \leftarrow f[i, k]+f[k, j]$

Lemma Assume there are no negative cycles in G. After iteration k, for $i, j \in V, f[i, j]$ is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3, \cdots, k\}$ as intermediate vertices.

Floyd-Warshall (G, w)

1: $f \leftarrow w$

2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5:
6: if $f[i, k]+f[k, j]<f[i, j]$ then

Lemma Assume there are no negative cycles in G. After iteration k, for $i, j \in V, f[i, j]$ is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3, \cdots, k\}$ as intermediate vertices.

- Running time $=O\left(n^{3}\right)$.

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=2, k=1, j=3$

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=2, k=1, j=3$

	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=1, k=2, j=4$

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=1, k=2, j=4$

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=3, k=2, j=1$,

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=3, k=2, j=1$,

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=3, k=2, j=4$

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=3, k=2, j=4$

	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=1, k=3, j=2$

	1	2	3	4	5
1	0	40	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

- $i=1, k=3, j=2$

Recovering Shortest Paths

Floyd-Warshall (G, w)
1: $f \leftarrow w, \pi[i, j] \leftarrow \perp$ for every $i, j \in V$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4:
5:
6 :
for $j \leftarrow 1$ to n do
if $f[i, k]+f[k, j]<f[i, j]$ then

$$
f[i, j] \leftarrow f[i, k]+f[k, j], \pi[i, j] \leftarrow k
$$

Recovering Shortest Paths

Floyd-Warshall (G, w)
1: $f \leftarrow w, \pi[i, j] \leftarrow \perp$ for every $i, j \in V$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5: \quad if $f[i, k]+f[k, j]<f[i, j]$ then
6:
1: if $\pi[i, j]=\perp$ then
2: $\quad \operatorname{print}(i, j)$
3: else
4: \quad print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

Floyd-Warshall (G, w)

1: $f \leftarrow w, \pi[i, j] \leftarrow \perp$ for every $i, j \in V$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5: if $f[i, k]+f[k, j]<f[i, j]$ then
6: $\quad f[i, j] \leftarrow f[i, k]+f[k, j], \pi[i, j] \leftarrow k$

Detecting Negative Cycles

Floyd-Warshall (G, w)

1: $f \leftarrow w, \pi[i, j] \leftarrow \perp$ for every $i, j \in V$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5:
6: if $f[i, k]+f[k, j]<f[i, j]$ then

$$
f[i, j] \leftarrow f[i, k]+f[k, j], \pi[i, j] \leftarrow k
$$

7: for $k \leftarrow 1$ to n do
8: \quad for $i \leftarrow 1$ to n do
9: \quad for $j \leftarrow 1$ to n do
10:
11:
if $f[i, k]+f[k, j]<f[i, j]$ then report "negative cycle exists" and exit

Summary of Shortest Path Algorithms

algorithm	graph	weights	SS ?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U / D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

CSE 431/531: Algorithm Analysis and Design (Spring 2024) NP-Completeness

Lecturer: Kelin Luo
Department of Computer Science and Engineering University at Buffalo

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

NP-Completeness Theory

- The topics we discussed so far are positive results: how to design efficient algorithms for solving a given problem.
- NP-Completeness provides negative results: some problems can not be solved efficiently.

Q: Why do we study negative results?

- A given problem X cannot be solved in polynomial time.
- Without knowing it, you will have to keep trying to find polynomial time algorithm for solving X. All our efforts are doomed!

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Efficient $=$ Polynomial Time

- Polynomial time: $O\left(n^{k}\right)$ for any constant $k>0$
- Example: $O(n), O\left(n^{2}\right), O\left(n^{2.5} \log n\right), O\left(n^{100}\right)$
- Not polynomial time: $O\left(2^{n}\right), O\left(n^{\log n}\right)$
- Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient $=$ Polynomial Time

- For natural problems, if there is an $O\left(n^{k}\right)$-time algorithm, then k is small, say 4
- A good cut separating problems: for most natural problems, either we have a polynomial time algorithm, or the best algorithm runs in time $\Omega\left(2^{n^{c}}\right)$ for some c
- Do not need to worry about the computational model

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness
© NP-Complete Problems
(5) Dealing with NP-Hard Problems
(c) Summary

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

- The graph is called the Petersen Graph. It has no HC.

