extract min() heapify-down (%)

1: ret < A[l] 1: while 2; < s do

2: All] Als] 2. if2i=sor

3: plA[l]] « 1 key[A[2i]] < key[A[2i 4 1]] then

4: s+ s—1 3: j <+ 2i

5. if s > 1 then 4 else

6 heapify_down(1) 5 je2i+1

7: return ret . 60 if key[A[j]] < key[A[:]] then

7: swap A[i] and A[j]

decrease key(v, key val . p[A[]] < i, p[A[j]] < j

1: key[v] < key_value 9: 14 J

2: heapify-up(p[v]) 10: else break

@ Running time of heapify_up and heapify_down: O(Ign)

@ Running time of heapify_up and heapify_down: O(Ign)
@ Running time of insert, exact_min and decrease_key: O(lgn)

@ Running time of heapify_up and heapify_down: O(Ign)

@ Running time of insert, exact_min and decrease_key: O(lgn)

data structures | insert | extract_min | decrease_key
array O(1) O(n) O(1)
sorted array O(n) 0(1) O(n)
heap O(lgn) O(lgn) O(lgn)

Two Definitions Needed to Prove that the

Procedures Maintain

Def. We say that H is almost a heap except that key|A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too
big if we can decrease key[A[i]] to make H a heap.

@ Data Compression and Huffman Code

Encoding Letters Using Bits

o 8 letters a,b,c,d, e, f,g,h in a language
@ need to encode a message using bits
@ idea: use 3 bits per letter
o | b e |d|e|f]g|h
000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

deacfg — 011100000010101110

Q: Can we have a better encoding scheme? J

@ Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others? J

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme? J

A: Using variable-length encoding scheme might be more efficient. J

Idea

@ using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00 J

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c. J

Q: What is the issue with the following encoding scheme?
° a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of letters is a function 7y : S — {0,1}*
such that for two distinct x,y € S, y(x) is not a prefix of v(y). J

Prefix Codes

Def. A prefix code for a set S of letters is a function 7y : S — {0,1}*
such that for two distinct x,y € S, y(x) is not a prefix of v(y). J

J PN

100 V%@ y%

a b c
001 | 0000 | 0001
e / g
11 | 1010 | 1011

7 AP A
@%% 3 o

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 YN Y \]@
e f g h [ZA" o\
11 | 1010 | 1011 | 01 \@ @/

db db

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 YN Y \]®
e f g h [ZA" o\
11 | 1010 | 1011 | 01 \@ @/

db db

e 0001001100000001011110100001001

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
b db
e 0001/001100000001011110100001001

@ C

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
b db
e 0001/001,/100000001011110100001001

@ Ca

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
b db
e 0001/001/100/000001011110100001001

@ cad

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
gb &b
e 0001,/001/100/0000/01011110100001001
@ cadb

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
gb &b
e 0001,/001/100/0000/01/011110100001001
@ cadbh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d /// \\\
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0/ \1 0/ \1
gb &b
e 0001/001,/100/0000/01/01/1110100001001
@ cadbhh

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d /// \\\
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0/ \1 0/ \1
gb &b
e 0001/001/100/0000/01/01/11/10100001001
@ cadbhhe

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
gb &b
e 0001,/001/100/0000/01/01/11/1010/0001001
@ cadbhhef

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
gb &b
e 0001/001/100/0000/01/01/11/1010,/0001/001
@ cadbhhefc

Prefix Codes Guarantee Unique Decoding

@ Reason: there is only one way to cut the first code.

0 1
a b c d / \
001 | 0000 | 0001 | 100 [V&@
e f g h E/l 0 \i
11 | 1010 | 1011 | o1 \@ @/

0, 1 0 1
gb &b
e 0001/001/100/0000/01/01/11/1010/0001/001/

@ cadbhhefca

Properties of Encoding Tree

RN
AN

2N
R

Properties of Encoding Tree

% \ o Rooted binary tree
4 \@ 4 \@

(b
b &b

Properties of Encoding Tree

1
/ \ @ Rooted binary tree

o Left edges labelled 0 and right

/% /éemmm
5%\@ @/5%

Properties of Encoding Tree

1
/ \ @ Rooted binary tree

o Left edges labelled 0 and right

/ \@) / \@ edges labelled 1
@ A leaf corresponds to a code
% 0 for some letter

Properties of Encoding Tree

1
,% \ @ Rooted binary tree

o Left edges labelled 0 and right

/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Properties of Encoding Tree

1
,% \ @ Rooted binary tree

o Left edges labelled 0 and right

/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

example

letters a | blc|d]| e
frequencies 1834 /6|10

AN

ISV @g\@

scheme 1 scheme2 ~ scheme

example

letters a|blc|d] e

frequencies 1834 /6|10
scheme 1 length || 2 |3 |3 |2]| 2 | total =89
scheme 2 length || 1 |3 |3 |3 | 3 | total =87
scheme 3 length | 1 |4 4| 3| 2 || total = 84

AN TN 7Y

\
S

scheme 1 scheme 2 scheme 3

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?
@ Not clear how to design the greedy algorithm

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?
@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |

