
71/97

extract min()
1: ret A[1]
2: A[1] A[s]
3: p[A[1]] 1
4: s s� 1
5: if s � 1 then

6: heapify down(1)

7: return ret

decrease key(v, key value)
1: key[v] key value
2: heapify-up(p[v])

heapify-down(i)
1: while 2i  s do

2: if 2i = s or
key[A[2i]]  key[A[2i+ 1]] then

3: j 2i
4: else

5: j 2i+ 1

6: if key[A[j]] < key[A[i]] then
7: swap A[i] and A[j]
8: p[A[i]] i, p[A[j]] j
9: i j
10: else break

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

73/97

Two Definitions Needed to Prove that the
Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too
big if we can decrease key[A[i]] to make H a heap.

74/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

75/97

Encoding Letters Using Bits

8 letters a, b, c, d, e, f, g, h in a language

need to encode a message using bits

idea: use 3 bits per letter

a b c d e f g h
000 001 010 011 100 101 110 111

deacfg ! 011100000010101110

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

76/97

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more e�cient.

Idea
using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

78/97

Prefix Codes

Def. A prefix code for a set S of letters is a function � : S ! {0, 1}⇤
such that for two distinct x, y 2 S, �(x) is not a prefix of �(y).

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

78/97

Prefix Codes

Def. A prefix code for a set S of letters is a function � : S ! {0, 1}⇤
such that for two distinct x, y 2 S, �(x) is not a prefix of �(y).

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001100000001011110100001001

c

adbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100000001011110100001001

ca

dbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/000001011110100001001

cad

bhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01011110100001001

cadb

hhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/011110100001001

cadbh

hefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/1110100001001

cadbhh

efca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/10100001001

cadbhhe

fca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001001

cadbhhef

ca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001/001

cadbhhefc

a

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001/001/

cadbhhefca

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree

Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

