Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S^{\prime}.
S :

\square
j :

S^{\prime} : \square

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem?

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset
$$

2: while $A \neq \emptyset$ do

3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset
$$

2: while $A \neq \emptyset$ do

3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$

5: return S

Running time of algorithm?

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$

5: return S

Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$

5: return S

Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time
- Clever implementation: $O(n \lg n)$ time

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6:

$$
t \leftarrow f_{j}
$$

7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6:

$$
t \leftarrow f_{j}
$$

7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6:

$$
t \leftarrow f_{j}
$$

7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5:
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5:
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5:
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5:
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5:
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Clever Implementation of Greedy Algorithm

Schedule (s, f, n)
1: sort jobs according to f values
2: $t \leftarrow 0, S \leftarrow \emptyset$
3: for every $j \in[n]$ according to non-decreasing order of f_{j} do
4: \quad if $s_{j} \geq t$ then
5: $\quad S \leftarrow S \cup\{j\}$
6: $\quad t \leftarrow f_{j}$
7: return S

Outline

(1) Toy Example: Box Packing
(2) Interval Scheduling

- Interval Partitioning
(3) Offline Caching
- Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code
(5) Summary
(6) Exercise Problems

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Interval Partitioning

Input: n jobs, job i with start time s_{i} and finish time f_{i}
i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right)$ are disjoint
Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

- Take an arbitrary optimum solution S

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

- Take an arbitrary optimum solution S
- If it schedules j to the chosen feasible machine i, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

- Take an arbitrary optimum solution S
- If it schedules j to the chosen feasible machine i, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

- Take an arbitrary optimum solution S
- If it schedules j to the chosen feasible machine i, done
- Otherwise, replace all the jobs scheduled to the machine i in S with j and its subsequent jobs to obtain another optimum schedule S^{\prime}.

Greedy Algorithm for Interval Partitioning

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval partitioning problem?

Greedy Algorithm for Interval Partitioning

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

Partition (s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow\{1\}, t_{1}=0$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} s_{j^{\prime}}, S_{j} \leftarrow\left\{i^{\prime}\right\}_{i^{\prime} \in S, t_{i^{\prime}} \leq s_{j}}$
4: If $S_{j} \neq \emptyset$, then schedule j to a machine $i \in S_{j}$ and $t_{i}=f_{j}$
5: \quad Otherwise, schedule j to machine $|S|+1, S \leftarrow S \cup\{|S|+1\}$ and $t_{|S|}=f_{j}$
6: return S

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.
Obs. Greedy algorithm never schedules two incompatible jobs in the same machine.

Why "Greedy algorithm" is optimal?

Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.

Why "Greedy algorithm" is optimal?
Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the $d-1$ other machines. In other words, these $d-1$ job each ends after s_{j}.

Why "Greedy algorithm" is optimal?

Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the $d-1$ other machines. In other words, these $d-1$ job each ends after s_{j}.
- Observation: all these $d-1$ jobs starts earlier than s_{j} because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time $s_{j}+\epsilon$. The jobs depth $\geq d$.

Why "Greedy algorithm" is optimal?
Theorem Greedy algorithm is optimal.

Proof.

- Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the $d-1$ other machines. In other words, these $d-1$ job each ends after s_{j}.
- Observation: all these $d-1$ jobs starts earlier than s_{j} because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time $s_{j}+\epsilon$. The jobs depth $\geq d$.
- By the Observation in the previous slide, an optimal solution $\geq d$. Thus the greedy algorithm is optimal.

Greedy Algorithm for Interval Partitioning

Partition (s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow\{1\}, t_{1}=0
$$

2: while $A \neq \emptyset$ do
3: $\left.\quad j \leftarrow \arg \min _{j^{\prime} \in A} s_{j^{\prime}}, S_{j} \leftarrow\left\{i^{\prime}\right\}\right\}_{i^{\prime} \in S, t_{i^{\prime}} \leq s_{j}}$
4: If $S_{j} \neq \emptyset$, then schedule j to a machine $i \in S_{j}$ and $t_{i}=f_{j}$
5: \quad Otherwise, schedule j to machine $|S|+1, S \leftarrow S \cup\{|S|+1\}$ and $t_{|S|}=f_{j}$
6: return S
Running time of algorithm?

Greedy Algorithm for Interval Partitioning

Partition (s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow\{1\}, t_{1}=0
$$

2: while $A \neq \emptyset$ do
3: $\left.\quad j \leftarrow \arg \min _{j^{\prime} \in A} s_{j^{\prime}}, S_{j} \leftarrow\left\{i^{\prime}\right\}\right\}_{i^{\prime} \in S, t_{i^{\prime}} \leq s_{j}}$
4: \quad If $S_{j} \neq \emptyset$, then schedule j to a machine $i \in S_{j}$ and $t_{i}=f_{j}$
5: \quad Otherwise, schedule j to machine $|S|+1, S \leftarrow S \cup\{|S|+1\}$ and $t_{|S|}=f_{j}$
6: return S
Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time

Greedy Algorithm for Interval Partitioning

Partition (s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow\{1\}, t_{1}=0
$$

2: while $A \neq \emptyset$ do
3: $\left.\quad j \leftarrow \arg \min _{j^{\prime} \in A} s_{j^{\prime}}, S_{j} \leftarrow\left\{i^{\prime}\right\}\right\}_{i^{\prime} \in S, t_{i^{\prime}} \leq s_{j}}$
4: \quad If $S_{j} \neq \emptyset$, then schedule j to a machine $i \in S_{j}$ and $t_{i}=f_{j}$
5: \quad Otherwise, schedule j to machine $|S|+1, S \leftarrow S \cup\{|S|+1\}$ and $t_{|S|}=f_{j}$
6: return S
Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time
- Clever implementation: $O(n \lg n)$ time with Priority Queue.

Outline

(1) Toy Example: Box Packing

(2) Interval Scheduling

- Interval Partitioning
(3) Offline Caching
- Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code
(5) Summary
(6) Exercise Problems

Offline Caching

- Cache that can store k pages
- Sequence of page requests

Offline Caching

- Cache that can store k pages
cache

Offline Caching

- Cache that can store k pages \square
cache
\square
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

\square

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if

1
\square
5
4
2

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
\square
cache

\square
\square

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
cache
\square
\square
\square
\square
\square

\square
3

1
\square

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
page
sequence
\square5
cache
x
x
\square
\square

\square
\square
\square
\square
\square

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
page
sequence
\square5
cache

$\times 1$

$\times 11$ 5 4

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
page
\square5
cache $x$$x$

\square
\square
\square
\square

$\times 1$ 54
\square4
F

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing
page
\square 1 5 page if necessary.

cache

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.5
\square
\square
cache
\square

\square
\square
x
\square

$\square$$\times 1$
\square
\square4

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.5
\square
\square
cache
x \square
1
2 5

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.5
\square
cache
\square

\square
$\times 1$ \square
\square
\square

$\square$$\times 1$
\square
\square
\square4
x

\square
2 5

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
\square5
cache
\square 2 3

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
cache
page sequence
\square5
\square

\square

$\times 1$

\square

x

\square| 2 | 3 |
| :--- | :--- |

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

cache
\square

\square
$\times 1$ \square
\square
\square
\square
\square
$\times 1$ \square4
\square
112
$\times 123$

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

\square3
cache

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

cache
\square

\square

\square
\square
\square

$\times 1$
4

x 1 25
1 2 3
1 2 3
1 2 3

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

3
2
1
cache
\square

\square
 misses $=6$

Offline Caching

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
- Goal: minimize the number of cache misses.
cache

2

5

3
2
1
\square

\square

misses $=6$

A Better Solution for Example

Offline Caching Problem

Input: k : the size of cache n : number of pages

$$
\text { We use }[n] \text { for }\{1,2,3, \cdots, n\} .
$$

$\rho_{1}, \rho_{2}, \rho_{3}, \cdots, \rho_{T} \in[n]$: sequence of requests
Output: $i_{1}, i_{2}, i_{3}, \cdots, i_{T} \in\{$ hit, empty $\} \cup[n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

Offline Caching Problem

Input: k : the size of cache
n : number of pages
We use $[n]$ for $\{1,2,3, \cdots, n\}$. $\rho_{1}, \rho_{2}, \rho_{3}, \cdots, \rho_{T} \in[n]$: sequence of requests
Output: $i_{1}, i_{2}, i_{3}, \cdots, i_{T} \in\{$ hit, empty $\} \cup[n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Offline Caching Problem

Input: k : the size of cache
n : number of pages
We use $[n]$ for $\{1,2,3, \cdots, n\}$.
$\rho_{1}, \rho_{2}, \rho_{3}, \cdots, \rho_{T} \in[n]$: sequence of requests
Output: $i_{1}, i_{2}, i_{3}, \cdots, i_{T} \in\{$ hit, empty $\} \cup[n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

Offline Caching Problem

Input: k : the size of cache
n : number of pages

$$
\text { We use }[n] \text { for }\{1,2,3, \cdots, n\} .
$$

$\rho_{1}, \rho_{2}, \rho_{3}, \cdots, \rho_{T} \in[n]$: sequence of requests
Output: $i_{1}, i_{2}, i_{3}, \cdots, i_{T} \in\{$ hit, empty $\} \cup[n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the "competitive ratio" of online algorithms

Offline Caching: Potential Greedy Algorithms

- FIFO(First-In-First-Out): Evict the first-in page in cache

Offline Caching: Potential Greedy Algorithms

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest

Offline Caching: Potential Greedy Algorithms

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested

Offline Caching: Potential Greedy Algorithms

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache

Offline Caching: Potential Greedy Algorithms

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache
- All the above algorithms are not optimum!
- Indeed all the algorithms are "online", i.e, the decisions can be made without knowing future requests. Online algorithms can not be optimum.

FIFO is not optimum

FIFO is not optimum

FIFO is not optimum

FIFO

requests

2

\square

FIFO is not optimum

FIFO is not optimum

FIFO

requests

\square

FIFO is not optimum

FIFO

requests

\square
\square 1

FIFO is not optimum

FIFO

requests

\square
\square 1

FIFO is not optimum

FIFO

requests

FIFO is not optimum

FIFO

requests

1

FIFO is not optimum

FIFO

requests

FIFO is not optimum

FIFO

requests

$$
\begin{array}{l|llll}
\hline 1 & \mathbf{x} & 1 & \square & \square \\
\hline 2 & \mathbf{x} & \boxed{1} & \boxed{2} & \square \\
\hline 3 & \mathbf{x} & \boxed{1} & \boxed{ } & 2 \\
\hline & 3 \\
\hline 4 & \mathbf{x} & \boxed{4} & \boxed{2} & \boxed{3} \\
\hline 1 & \mathbf{x} & 4 & 4 & 1 \\
\hline & 3
\end{array}
$$

FIFO is not optimum

FIFO

requests

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& x \\
& x \\
& \text { misses }=5
\end{aligned}
$$

FIFO is not optimum

requests	FIFO				Furthest-in-Future			
1	x	1			x	1		
2	x	1	2		x	1	2	
3	x	1	2	3	x	1	2	3
4	x	4	2	3	x	1	4	3
1	x	4	1	3	\checkmark	1	4	3
			ses				ses	

Optimum Offline Caching

Furthest-in-Future (FF)

- Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one.
- The algorithm is not an online algorithm, since the decision at a step depends on the request sequence in the future.

