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Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an e�cient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more e�cient algorithm

main focus of analysis: running time
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Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
recursive programs: recurrence
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merge-sort(A, n)
1: if n = 1 then

2: return A

3: else

4: B  merge-sort
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: C  merge-sort
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4, 5

Combine: 6
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8 5 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6



6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6

3 4 5 8 1 2 6 7



6/75

merge-sort()

8 5 3 4 1 7 2 6
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Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

Better than insertion sort
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Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.
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Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)
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Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)
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Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: c 0
2: for every i 1 to n� 1 do

3: for every j  i+ 1 to n do

4: if A[i] > A[j] then c c+ 1

5: return c
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Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.
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Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Lemma If both B and C are sorted, then we can compute m in
O(n) time!
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:
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Counting Inversions between B and C
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Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:
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5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2
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Count Inversions between B and C

Procedure that merges B and C and counts inversions between B

and C at the same time

merge-and-count(B,C, n1, n2)
1: count 0;
2: A array of size n1 + n2; i 1; j  1
3: while i  n1 or j  n2 do

4: if j > n2 or (i  n1 and B[i]  C[j]) then
5: A[i+ j � 1] B[i]; i i+ 1
6: count count+ (j � 1)
7: else

8: A[i+ j � 1] C[j]; j  j + 1

9: return (A, count)
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Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7
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1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)



18/75

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)



19/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number



20/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number



21/75

Quicksort vs Merge-Sort

Merge Sort Quicksort

Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564
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Quicksort

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)
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7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)



24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)
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Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)
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Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n lg n).
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Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

To partition the array into two parts, we only need O(1) extra
space.
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64 69

To partition the array into two parts, we only need O(1) extra
space.
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In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.
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To partition the array into two parts, we only need O(1) extra
space.


