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@ Divide-and-Conquer



Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm




Greedy Algorithm

@ mainly for combinatorial optimization problems
@ trivial algorithm runs in exponential time

@ greedy algorithm gives an efficient algorithm

@ main focus of analysis: correctness of algorithm

Divide-and-Conquer

@ not necessarily for combinatorial optimization problems
@ trivial algorithm already runs in polynomial time

@ divide-and-conquer gives a more efficient algorithm

@ main focus of analysis: running time




Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance



Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
@ recursive programs: recurrence




merge-sort(A, n)
1. if n =1 then
2: return A
3: else

4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>
5: C + merge—sort(AHn/ZJ + 1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])




merge-sort(A, n)
1: if n =1 then
2: return A

3: else
4: B+ merge—sort(A[l..Ln/ZJ], Ln/2j>

5: C + merge—sort(AHn/ZJ + 1.n], [n/ﬂ)
6: return merge(B, C, [n/2], [n/2])

@ Divide: trivial
e Conquer: 4,5
@ Combine: 6



merge-sort()
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Running Time for Merge-Sort

‘ AL ‘

‘A[l..Z]‘ ‘A[B.A]‘ ‘A[S..fi}‘ J(LX[?..S] \

Al|LARIAB] A Af]| | Al6]] | A[7]] A8

@ Each level takes running time O(n)
@ There are O(Ign) levels
@ Running time = O(nlgn)

@ Better than insertion sort



Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?




Running Time for Merge-Sort

Implementation

@ Divide Ala,b] by ¢ = |(a+b)/2]: Ala,q] and Alg + 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward
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Implementation
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Running Time for Merge-Sort

Implementation

e Divide Afa,b] by ¢ = [(a +b)/2]: Ala,q] and A[g+ 1,b]; or
Ala,q — 1] and Alq, b]?

@ Speed-up: avoid the constant copying from one layer to another
and backward

@ Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm

@ Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.




Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On)  ifn>2
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Running Time for Merge-Sort Using Recurrence

@ T'(n) = running time for sorting n numbers,then

T(n) = O(1) ifn=1
EANT(n/2)) + T(Tn)2]) + On)  ifn>2

e With some tolerance of informality:

T(n) = O(1) ifn=1
= o (n/2) + O(m)  ifn>2

e Even simpler: T'(n) = 27'(n/2) + O(n). (Implicit assumption:
T(n) = O(1) if n is at most some constant.)

@ Solving this recurrence, we have T'(n) = O(nlgn) (we shall show
how later)



© Counting Inversions



Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j]. J




Def. Given an array A of n integers, an inversion in A is a pair (4, j)
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Counting Inversions
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Output: number of inversions in A




Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: a sequence A of n numbers
Output: number of inversions in A

Example:
10 8 15 9 12




Def. Given an array A of n integers, an inversion in A is a pair (4, j)

of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: a sequence A of n numbers
Output: number of inversions in A

Example:
10 8 15
8 9 10

12

12

15




Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: a sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15




Def. Given an array A of n integers, an inversion in A is a pair (4, j)
of indices such that i < j and A[i] > A[j].

v

Counting Inversions
Input: a sequence A of n numbers
Output: number of inversions in A

Example:
1 1 12

10 12 15

@ 4 inversions (for convenience, using numbers, not indices):
(10,8),(10,9),(15,9), (15,12)




Naive Algorithm for Counting Inversions

count-inversions(A, n)

1: ¢+ 0

2: for every i< 1ton—1do

3 for every j «— i+ 1 ton do

4: if Afi] > A[j] then c<+c+1
5

. return ¢




Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]

° #invs(A ) = #invs(B ) + #invs( )+m

= |{(i.j) - Bli] > C[jl}|
Q: How fast can we compute m, via trivial algorithm? J
A: O(n?) |

e Can not improve the O(n?) time for counting inversions.



Divide-and-Conquer

p

i

A: B C

e p=(n/2],B=A[l..p],C = Alp+1..n]
° #invs(A ) #invs(B ) #invs( ) +m
= [{.5)  Bli] > Cljl}|

Lemma |If both B and C' are sorted, then we can compute m in
O(n) time! J




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

12

20
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total= 0
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

8

12

20

32

48

25

29

+0

+2

total= 2



Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 7|8

total= 2
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

B:

v

3 1220|3248
D 912529
+0 +2

3 71819

total= 2



Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= b5

+0 +2 43




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= b5

v

C:15] 7192529

+0 +2 43




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:
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B:|3|8|12]20|32]48 total= 8
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Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

v

C:15] 7192529

+0 +2  +3+3




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:|3|8|12]20|32]48 total= 8

+0 +2  +3+3




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 13

+0 +2  +3+3 +5




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 13

v

+0 +2  +3+3 +5




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 18

v

C:15] 7192529

+0 +2  +3+3 +5 +5
3|5 | 78|9]12[20(25(29|32|48




Counting Inversions between B and C

Count pairs 4, j such that B[i] > Cj]:

v

B:13|8]|12]/20|32|48 total= 18

C:15] 7192529

+0 +2  +3+3 +5 +5
3|5 | 78|9]12[20(25(29|32|48




Count Inversions between B and C

@ Procedure that merges B and C and counts inversions between B
and C at the same time

merge-and-count(B, C, ny,ns)
count < 0;
A<+ array of size ny +no; i+ 1; j+ 1
while : < n; or j <n, do
if j > ny or (¢ <ny and B[i] < C[j]) then
Ali+j—1]« Bfil; i+ i+1
count < count + (j — 1)
else
Ali+j -1« Cljl;j«j+1
return (A, count)

© O XN Wb




Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)

1. if n =1 then

2: return (A,0)

3: else

4: (B,my) < sort-and-count (A[l..Ln/QH, Ln/2j>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])

7: return (A, m; + my + mg3)




Sort and Count Inversions in A

@ A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n) o Divide: trivial
1: if n =1 then o Conquer: 4,5
2: return (A,0) e Combine: 6, 7
3: else

4: (B, my) < sort-and-count (A[l..Ln/QH, Ln/2]>

5: (C,m2) < sort-and-count (A[[n/?j +1.n], fn/ﬂ)
(A, m3) < merge-and-count(B, C, |n/2], [n/2])
7: return (A, m; + my + mg3)




sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)



sort-and-count(A, n)

1: if n =1 then

2: return (A,0)

3: else

4: (B,my) <+ sort-and-count (A[l [n/2]], n/2J>
(Cymg) sort—and—count(AHn /2] + 1.n], [n/ﬂ)
6: (A, m3) < merge-and-count(B, C, [n/2], [n/2])
7: return (A, m; + mg + ms)

S

@ Recurrence for the running time: T'(n) = 27 (n/2) + O(n)
@ Running time = O(nlgn)



e Quicksort and Selection
@ Quicksort
@ Lower Bound for Comparison-Based Sorting Algorithms
@ Selection Problem



e Quicksort and Selection
@ Quicksort



Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse

Combine | Merge 2 sorted arrays Trivial



Quicksort Example

Assumption We can choose median of an array of size n in O(n) J
time.

291827564 |38 |45194169|25|76|15|92|37| 17|85
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Quicksort Example

Assumption We can choose median of an array of size n in O(n) J
time.

29 1827564384594 169 |25|76|15|92|37| 17|85

29 1381451251537 |17 164 |82|75|94|92|69 | 76|85




Quicksort Example

Assumption We can choose median of an array of size n in O(n) J
time.

29 1827564384594 169 |25|76|15|92|37| 17|85

2913814512515 |37 17164 |82|75]94|92|69 | 76|85




Quicksort Example

Assumption We can choose median of an array of size n in O(n) J

time.

29 1827564384594 169 |25|76|15|92|37| 17|85

2913814512515 |37 17164 |82|75]94|92|69 | 76|85

25 115 117129 |38 |45 |37 64|82 |75]94|92|69 | 76|85




quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < lower median of A

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:




quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < lower median of A

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

@ Recurrence T'(n) < 2T(n/2) + O(n)



quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < lower median of A

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

@ Recurrence T'(n) < 2T(n/2) + O(n)
@ Running time = O(nlgn)



Assumption We can choose median of an array of size n in O(n) J
time.

Q: How to remove this assumption? J




Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

© There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)




Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

© There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

@ Choose a pivot randomly and pretend it is the median (it is
practical)




Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < a random element of A (x is called a pivot)

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:




Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1]. J

Q: Can computers really produce random numbers? ]
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1]. J

Q: Can computers really produce random numbers? J

A: No! The execution of a computer programs is deterministic! )

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random



Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1]. J

Q: Can computers really produce random numbers? |

A: No! The execution of a computer programs is deterministic! )

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

@ In theory: assume they can.



Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < a random element of A (x is called a pivot)

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

Lemma The expected running time of the algorithm is O(nlgn). J




Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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extra space. J
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J

-—
-—,
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J

-—
-—,
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J

-—
-—,
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J

-
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Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space. J
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e To partition the array into two parts, we only need O(1) extra
space.



