CSE 431/531: Algorithm Analysis and Design (Spring 2024) Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

Divide-and-Conquer

- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Solving Recurrences
- 6 Other Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- Divide: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

Running time analysis

• recursive programs: recurrence

merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: **else**

4:
$$B \leftarrow \mathsf{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$$

5:
$$C \leftarrow \text{merge-sort} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right) \right)$$

6: **return** merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

merge-sort(A, n)

- 1: if n = 1 then
- 2: return A
- 3: **else**

4:
$$B \leftarrow \mathsf{merge-sort}\left(A\left[1..\lfloor n/2\rfloor\right],\lfloor n/2\rfloor\right)$$

5:
$$C \leftarrow \mathsf{merge-sort}\left(A\left[\lfloor n/2 \rfloor + 1..n\right], \lceil n/2 \rceil\right)$$

- 6: **return** merge $(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- Divide: trivial
- Conquer: 4, 5
- Combine: 6

- Each level takes running time ${\cal O}(n)$
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$
- Better than insertion sort

Implementation

• Divide A[a,b] by $q = \lfloor (a+b)/2 \rfloor$: A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?

Implementation

- Divide A[a,b] by $q=\lfloor (a+b)/2 \rfloor$: A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward

Implementation

- Divide A[a,b] by $q=\lfloor (a+b)/2 \rfloor$: A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

Implementation

- Divide A[a,b] by $q=\lfloor (a+b)/2 \rfloor$: A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

Implementation

- Divide A[a,b] by $q=\lfloor (a+b)/2 \rfloor$: A[a,q] and A[q+1,b]; or A[a,q-1] and A[q,b]?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

Stable sorting algorithm

• Stable sorting algorithm has the property that equal items will appear in the final sorted list in the same relative order that they appeared in the initial input.

• T(n) =running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

• Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)

 $\bullet \ T(n) = {\rm running \ time \ for \ sorting \ } n \ {\rm numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{2} + O(n) & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Solving Recurrences
- 6 Other Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

Counting Inversions

Input: a sequence A of n numbers

Counting Inversions

Input: a sequence A of n numbers

Counting Inversions

Input: a sequence A of n numbers

Example:				
10	8	15	9	12
8	9	10	12	15

Counting Inversions

Input: a sequence A of n numbers

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in *A*

• 4 inversions (for convenience, using numbers, not indices): (10, 8), (10, 9), (15, 9), (15, 12)

count-inversions(A, n)

1:
$$c \leftarrow 0$$

2: for every
$$i \leftarrow 1$$
 to $n-1$ do

3: for every
$$j \leftarrow i+1$$
 to n do

4: **if**
$$A[i] > A[j]$$
 then $c \leftarrow c+1$

5: return c

Divide-and-Conquer

•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

• Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer

•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

• $\#invs(A) = \#invs(B) + \#invs(C) + m$
 $m = |\{(i, j) : B[i] > C[j]\}|$

Lemma If both B and C are sorted, then we can compute m in O(n) time!
$$B: \begin{bmatrix} 3 & 8 & 12 & 20 & 32 & 48 \end{bmatrix}$$

$$total = 0$$

$$C:$$
 5 7 9 25 29

Count pairs i, j such that B[i] > C[j]: 3 B: 8 12 20 32 48 total = 137 C: 9 25 29 5 +2 +3 +3+5+0<u>9 12 20 25 29 32</u> 5 7 8 3

Count pairs i, j such that B[i] > C[j]: 3 B: 8 12 20 32 48 total = 187 C: 9 25 29 +2 +3 +3+5 +5+0**9** 12 20 **25** 29 32 5 7 8 48 3

 $\bullet\,$ Procedure that merges B and C and counts inversions between B and C at the same time

merge-and-count
$$(B, C, n_1, n_2)$$

1: count $\leftarrow 0$;
2: $A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1$
3: while $i \leq n_1$ or $j \leq n_2$ do
4: if $j > n_2$ or $(i \leq n_1 \text{ and } B[i] \leq C[j])$ then
5: $A[i+j-1] \leftarrow B[i]; i \leftarrow i+1$
6: count \leftarrow count + $(j-1)$
7: else
8: $A[i+j-1] \leftarrow C[j]; j \leftarrow j+1$
9: return $(A, count)$

• A procedure that returns the sorted array of A and counts the number of inversions in A:

sort-and-count(A, n)

1: if n = 1 then

2: **return**
$$(A, 0)$$

3: **else**

4:
$$(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$$

5:
$$(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$$

- 6: $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
- 7: return $(A, m_1 + m_2 + m_3)$

Sort and Count Inversions in A

• A procedure that returns the sorted array of A and counts the number of inversions in A:

sor	t-and-count(A, n)	• Divide: trivial
1:	if $n = 1$ then	• Conquer: 4, 5
2:	return $(A, 0)$	• Combine: 6, 7
3:	else	
4:	$(B, m_1) \leftarrow sort-and-coun$	$t(A[1\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5:	$(C, m_2) \leftarrow sort-and-count$	$t(A[\lfloor n/2 \rfloor + 1n], \lceil n/2 \rceil)$
6:	$(A, m_3) \leftarrow merge-and-co$	$unt(B,C,\lfloor n/2 \rfloor,\lceil n/2 \rceil)$
7:	return $(A, m_1 + m_2 + m_3)$	3)

sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**

4: $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$

- 5: $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6: $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

7: return
$$(A, m_1 + m_2 + m_3)$$

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

sort-and-count(A, n)

- 1: if n = 1 then
- 2: **return** (A, 0)
- 3: **else**

4: $(B, m_1) \leftarrow \text{sort-and-count} \left(A \left[1 \dots \lfloor n/2 \rfloor \right], \lfloor n/2 \rfloor \right)$

- 5: $(C, m_2) \leftarrow \text{sort-and-count} \left(A \left[\lfloor n/2 \rfloor + 1..n \right], \lceil n/2 \rceil \right)$
- 6: $(A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$

7: return
$$(A, m_1 + m_2 + m_3)$$

- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- 5 Solving Recurrences
- 6 Other Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

Outline

Divide-and-Conquer

- 2 Counting Inversions
- 3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- 4 Polynomial Multiplication
- 5 Solving Recurrences
- 6 Other Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

Merge SortDivideTrivialConquerRecurseCombineMerge 2 sorted arrays

Quicksort

Separate small and big numbers Recurse Trivial

$\begin{bmatrix} 29 & 02 & 10 & 04 & 00 & 40 & 94 & 09 & 20 & 10 & 10 & 92 & 01 & 11 & 0 \\ \end{bmatrix}$		29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
--	--	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

29 02 10 04 00 40 94 09 20 10 10 92 01 11	29 82 75	64 38	45 94	69 25	76 15	92 37	17 85
---	----------	--------------	-------	-------	-------	-------	-------

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

Divide

 $\langle \rangle$

\\ Conquer

Conquer

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** concatenation of B_L , t copies of x, and B_R

• Recurrence $T(n) \leq 2T(n/2) + O(n)$

Divide

 $\langle \rangle$

\\ Conquer

\\ Conquer

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** concatenation of B_L , t copies of x, and B_R
- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$

Divide

 $\langle \rangle$

\\ Conquer

\\ Conquer

Q: How to remove this assumption?

Q: How to remove this assumption?

A:

There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Q: How to remove this assumption?

A:

- There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ array of elements in A that are less than x
- 4: $A_R \leftarrow$ array of elements in A that are greater than x
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

Divide

\\ Divide

\\ Conquer

\\ Conquer

Q: Can computers really produce random numbers?

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

• In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

quicksort(A, n)

- 1: if $n \leq 1$ then return A
- 2: $x \leftarrow a \text{ random element of } A \text{ (} x \text{ is called a pivot)}$
- 3: $A_L \leftarrow$ array of elements in A that are less than $x \land \backslash$ Divide
- 4: $A_R \leftarrow$ array of elements in A that are greater than $x \setminus \setminus$ Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, \mathsf{length of } A_L)$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, \mathsf{length of } A_R)$
- 7: $t \leftarrow$ number of times x appear A
- 8: return concatenation of B_L , t copies of x, and B_R

Lemma The expected running time of the algorithm is $O(n \lg n)$.

\\ Conquer

\\ Conquer

29 82 75 64 38 45 94 69 25 76 15 92 37 1	29 8	75 64	4 38 45	94 69	25 76	15	92 37	17 85
--	------	-------	---------	-------	-------	----	-------	-------

64 82 75 29 38 45 94 69 25 76 15 92 37	4						38	38	3	38	38	8	38	8	45	94	69	25	76	15	92	37	17	85
--	---	--	--	--	--	--	----	----	---	----	----	---	----	---	----	----	----	----	----	----	----	----	----	----

 In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

• To partition the array into two parts, we only need ${\cal O}(1)$ extra space.