
CSE 431/531: Algorithm Analysis and Design (Spring 2024)

Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo

2/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number

3/75

Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an e�cient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more e�cient algorithm

main focus of analysis: running time

3/75

Greedy Algorithm
mainly for combinatorial optimization problems

trivial algorithm runs in exponential time

greedy algorithm gives an e�cient algorithm

main focus of analysis: correctness of algorithm

Divide-and-Conquer
not necessarily for combinatorial optimization problems

trivial algorithm already runs in polynomial time

divide-and-conquer gives a more e�cient algorithm

main focus of analysis: running time

4/75

Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
recursive programs: recurrence

4/75

Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Running time analysis
recursive programs: recurrence

5/75

merge-sort(A, n)
1: if n = 1 then

2: return A

3: else

4: B merge-sort
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: C merge-sort
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4, 5

Combine: 6

5/75

merge-sort(A, n)
1: if n = 1 then

2: return A

3: else

4: B merge-sort
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: C merge-sort
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: return merge(B,C, bn/2c, dn/2e)

Divide: trivial

Conquer: 4, 5

Combine: 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6

3 4 5 8 1 2 6 7

6/75

merge-sort()

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

8 5 3 4 1 7 2 6

5 8 3 4 1 7 2 6

3 4 5 8 1 2 6 7

1 2 3 4 5 6 7 8

7/75

Running Time for Merge-Sort

A[1..8]

A[1..4] A[5..8]

A[5..6] A[7..8]A[3..4]A[1..2]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Each level takes running time O(n)

There are O(lg n) levels

Running time = O(n lg n)

Better than insertion sort

8/75

Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

8/75

Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

8/75

Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

8/75

Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

8/75

Running Time for Merge-Sort

Implementation
Divide A[a, b] by q = b(a+ b)/2c: A[a, q] and A[q + 1, b]; or
A[a, q � 1] and A[q, b]?

Speed-up: avoid the constant copying from one layer to another
and backward

Speed-up: stop the dividing process when the sequence sizes fall
below constant

Stable sorting algorithm
Stable sorting algorithm has the property that equal items will
appear in the final sorted list in the same relative order that they
appeared in the initial input.

9/75

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)

9/75

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)

9/75

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)

9/75

Running Time for Merge-Sort Using Recurrence

T (n) = running time for sorting n numbers,then

T (n) =

(
O(1) if n = 1

T (bn/2c) + T (dn/2e) +O(n) if n � 2

With some tolerance of informality:

T (n) =

(
O(1) if n = 1

2T (n/2) +O(n) if n � 2

Even simpler: T (n) = 2T (n/2) +O(n). (Implicit assumption:
T (n) = O(1) if n is at most some constant.)

Solving this recurrence, we have T (n) = O(n lg n) (we shall show
how later)

10/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:
10 8 15 9 12

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:
10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:
10 8 15 9 12

8 9 10 12 15

4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

11/75

Def. Given an array A of n integers, an inversion in A is a pair (i, j)
of indices such that i < j and A[i] > A[j].

Counting Inversions
Input: a sequence A of n numbers

Output: number of inversions in A

Example:
10 8 15 9 12

8 9 10 12 15
4 inversions (for convenience, using numbers, not indices):
(10, 8), (10, 9), (15, 9), (15, 12)

12/75

Naive Algorithm for Counting Inversions

count-inversions(A, n)
1: c 0
2: for every i 1 to n� 1 do

3: for every j i+ 1 to n do

4: if A[i] > A[j] then c c+ 1

5: return c

13/75

Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Q: How fast can we compute m, via trivial algorithm?

A: O(n2)

Can not improve the O(n2) time for counting inversions.

14/75

Divide-and-Conquer

B CA:

p

p = bn/2c, B = A[1..p], C = A[p+ 1..n]

#invs(A) = #invs(B) + #invs(C) +m

m =
���(i, j) : B[i] > C[j]

 ��

Lemma If both B and C are sorted, then we can compute m in
O(n) time!

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

total= 0B:

C:

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7

total= 0B:

C:

+0

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8

2total= 02B:

C:

+0 +2

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 02B:

C:

+0 +2

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12

25B:

C:

+0 +2 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12

25B:

C:

+0 +2 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 25

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 25

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925

258B:

C:

+0 +2 +3 +3

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32

25813B:

C:

+0 +2 +3 +3 +5

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32

25813B:

C:

+0 +2 +3 +3 +5

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32 48

2581318B:

C:

+0 +2 +3 +3 +5 +5

15/75

Counting Inversions between B and C

Count pairs i, j such that B[i] > C[j]:

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9

2total= 0

12 20 2925 32 48

2581318B:

C:

+0 +2 +3 +3 +5 +5

16/75

Count Inversions between B and C

Procedure that merges B and C and counts inversions between B

and C at the same time

merge-and-count(B,C, n1, n2)
1: count 0;
2: A array of size n1 + n2; i 1; j 1
3: while i n1 or j n2 do

4: if j > n2 or (i n1 and B[i] C[j]) then
5: A[i+ j � 1] B[i]; i i+ 1
6: count count+ (j � 1)
7: else

8: A[i+ j � 1] C[j]; j j + 1

9: return (A, count)

17/75

Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7

17/75

Sort and Count Inversions in A

A procedure that returns the sorted array of A and counts the
number of inversions in A:

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Divide: trivial

Conquer: 4, 5

Combine: 6, 7

18/75

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)

18/75

sort-and-count(A, n)
1: if n = 1 then

2: return (A, 0)
3: else

4: (B,m1) sort-and-count
⇣
A
⇥
1..bn/2c

⇤
, bn/2c

⌘

5: (C,m2) sort-and-count
⇣
A
⇥
bn/2c+ 1..n

⇤
, dn/2e

⌘

6: (A,m3) merge-and-count(B,C, bn/2c, dn/2e)
7: return (A,m1 +m2 +m3)

Recurrence for the running time: T (n) = 2T (n/2) +O(n)

Running time = O(n lg n)

19/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number

20/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Solving Recurrences

6 Other Classic Algorithms using Divide-and-Conquer

7 Computing n-th Fibonacci Number

21/75

Quicksort vs Merge-Sort

Merge Sort Quicksort

Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial

22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85

22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 8564

22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429

23/75

Quicksort

quicksort(A, n)
1: if n 1 then return A

2: x lower median of A
3: AL array of elements in A that are less than x \\ Divide
4: AR array of elements in A that are greater than x \\ Divide
5: BL quicksort(AL, length of AL) \\ Conquer
6: BR quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) 2T (n/2) +O(n)

Running time = O(n lg n)

23/75

Quicksort

quicksort(A, n)
1: if n 1 then return A

2: x lower median of A
3: AL array of elements in A that are less than x \\ Divide
4: AR array of elements in A that are greater than x \\ Divide
5: BL quicksort(AL, length of AL) \\ Conquer
6: BR quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) 2T (n/2) +O(n)

Running time = O(n lg n)

23/75

Quicksort

quicksort(A, n)
1: if n 1 then return A

2: x lower median of A
3: AL array of elements in A that are less than x \\ Divide
4: AR array of elements in A that are greater than x \\ Divide
5: BL quicksort(AL, length of AL) \\ Conquer
6: BR quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n) 2T (n/2) +O(n)

Running time = O(n lg n)

24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)

24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)

24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)

25/75

Quicksort Using A Random Pivot

quicksort(A, n)
1: if n 1 then return A

2: x a random element of A (x is called a pivot)
3: AL array of elements in A that are less than x \\ Divide
4: AR array of elements in A that are greater than x \\ Divide
5: BL quicksort(AL, length of AL) \\ Conquer
6: BR quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.

26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.

26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.

26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.

27/75

Quicksort Using A Random Pivot

quicksort(A, n)
1: if n 1 then return A

2: x a random element of A (x is called a pivot)
3: AL array of elements in A that are less than x \\ Divide
4: AR array of elements in A that are greater than x \\ Divide
5: BL quicksort(AL, length of AL) \\ Conquer
6: BR quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n lg n).

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29 17

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17 1764

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

8264

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

37 64

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

7564

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

15 64

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

9464

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

25 64

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

64 69

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.

28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.

