Kruskal's Algorithm: Efficient Implementation of

Greedy Algorithm

MST-Kruskal(G, w)

F+ 0
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S, then
F«+ FU{(u,v)}
S S\{Su I\ {S} U{S. U5}

return (V, F)
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Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

F <+
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in S containing u
S, < the set in § containing v
if S, # S5, then
F+— FU{(u,v)}
S S\{SI\ (S} U{S. U S}

return (V, F)
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Use union-find data structure to support @, @, @, @, O.



Union-Find Data Structure

o V: ground set
@ We need to maintain a partition of V' and support following
operations:

o Check if u and v are in the same set of the partition
o Merge two sets in partition



o V={1,23,--,16}
e Partition: {2,3,5,9,10,12,15},{1,7,13,16}, {4,8,11}, {6, 14}

@ parli]: parent of i, (par[i] = L if i is a root).
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Union-Find Data Structure

SN

@ Q: how can we check if © and v are in the same set?
@ A: Check if root(u) = root(v).
@ root(u): the root of the tree containing u

@ Merge the trees with root r and r’": par|r] < r'.



Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par(v])




Union-Find Data Structure

root(v)

. if par[v] = L then
return v

else
return root(par(v])

[y
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Problem: the tree might too deep; running time might be large



Union-Find Data Structure

root(v)

1 if parjv] = L then
2 return v

3: else

4 return root(par|v])

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.



Union-Find Data Structure

root(v
root(v) | ( )
. 1: if par[v] = L then
1 if parjv] = L then 9. return v
2 return v 3: else
3: else 4. parfv] < root(par[v))
4 return root(parfv]) . 5 return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.



Union-Find Data Structure

root(v)
1: if par[v] = L then
2: return v
3: else
4: par <— root par
5: return par

@m



Union-Find Data Structure

root(v)
1: if par[v] = L then
2: return v
3: else
4: par <— root par
5: return par

5\@1



MST-Kruskal(G, w)
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F«10
S+ {{v}:veV}
sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
Sy < the set in § containing u
S, < the set in S containing v
if 5, # 5, then
F <+ FU{(u,v)}
S S\{Sup \ {Sut U{SuUS,}

return (V, F)




MST-Kruskal(G, w)
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F<«0
for every v € V do: parfv] < L

sort the edges of E in non-decreasing order of weights w
for each edge (u,v) € E in the order do
u’ < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)




MST-Kruskal(G, w)

- F+ 0
: for every v € V do: par[v] « L
sort the edges of E in non-decreasing order of weights w
. for each edge (u,v) € E in the order do
u' < root(u)
v' < root(v)
if «' v then
F+ FU{(u,v)}
parfu'] < v
return (V, F)
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° 0.0.0.0.0 takes time O(ma(n))

e a(n) is very slow-growing: a(n) < 4 for n < 103,



MST-Kruskal(G, w)

1. F 10

2: for every v € V do: parfv] < L

3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u,v) € E in the order do

bs u' < root(u)

6: v" < root(v)

7: if «' v then

8: F+ FU{(u,v)}

9: parfu'] < v

10: return (V) F)

0.0.0.0.0 takes time O(ma(n))
e a(n) is very slow-growing: a(n) < 4 for n < 103,
@ Running time = time for @ = O(mlgn).
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Assumption Assume all edge weights are different.

Lemma An edge ¢ € E is not in the MST, if and only if there is
cycle C'in G in which e is the heaviest edge.

@ (i,g) is not in the MST because of cycle (i,c¢, f, g)
°

(e, f) is in the MST because no such cycle exists



@ Minimum Spanning Tree

@ Reverse-Kruskal's Algorithm
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a spanning tree
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Two Methods to Build a MST

@ Start from F <+ (), and add edges to F one by one until we obtain
a spanning tree

@ Start from F < FE, and remove edges from F' one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.




Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge. J




Reverse Kruskal's Algorithm

MST-Greedy(G, w)
1. F+ F
2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V,F \ {e}) is connected then
5: F + F\{e}
6: return (V, F)




Reverse Kruskal's Algorithm: Example
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Reverse Kruskal's Algorithm: Example




@ Minimum Spanning Tree

@ Prim’s Algorithm



Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.




Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.



Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.
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Proof.
@ Let T be a MST

@ Consider all components obtained by removing a from T’

S4v4




Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'
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lightest edge e* incident to a
/

Proof.
@ Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

o Let e be the edge in T" connecting a to C'
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Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'

T" =T\ {e} U{e*} is a spanning tree with w(7") < w(T) O

\\\\\\\
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Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F)




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,

where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F) )

@ Running time of naive implementation: O(nm)



Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S
(13,¢)




Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg:(u,v)cr W, v):

the weight of the lightest edge between v and S
o m[v] = arg minyegs:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’s Algorithm

MST-Prim(G, w)

s <— arbitrary vertex in G
S(—(D d(s) + 0 and d[v] + oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S+ SU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}
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Prim’s Algorithm

For every v € V' \ .S maintain
o d[v] = minyeg.(uv)er w(u, v):

the weight of the lightest edge between v and S
o m[v] = arg minyeg:(uv)cr WU, v):

(m[v],v) is the lightest edge between v and S

In every iteration
e Pick uw € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’s Algorithm

For every v € V' \ .S maintain
o d[v] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

e Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations



Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value




Prim’s Algorithm

MST-Prim(G, w)
1: s < arbitrary vertex in G

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u < vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, wlu])|u € V' \ {s}}

e 0N a




Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) « 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}
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Running Time of Prim’s Algorithm Using Priority

Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)
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Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
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Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. J

(¢, f) is in MST because of cut ({a, b,c,i},V\{a,b,c, @})

(]
@ (i,g) is not in MST because no such cut exists
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“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different. J

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.



