
16/88

Kruskal’s Algorithm: E�cient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

17/88

Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .

18/88

Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:
Check if u and v are in the same set of the partition
Merge two sets in partition

19/88

V = {1, 2, 3, · · · , 16}
Partition: {2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

par[i]: parent of i, (par[i] = ? if i is a root).

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

20/88

Union-Find Data Structure

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

21/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.

22/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])
5: return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

22/88

Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v] root(par[v])
5: return par[v]

3

10 2

12 15 9

7

1 16

13

8

4 11

6

14

5

23/88

MST-Kruskal(G, w)
1: F ;
2: S {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su the set in S containing u

6: Sv the set in S containing v

7: if Su 6= Sv then

8: F F [{(u, v)}
9: S S \ {Su} \ {Sv} [{Su [Sv}

10: return (V, F)

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n) 4 for n 1080.

Running time = time for 3 = O(m lg n).

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n) 4 for n 1080.

Running time = time for 3 = O(m lg n).

24/88

MST-Kruskal(G, w)
1: F ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0 root(u)
6: v

0 root(v)
7: if u

0 6= v
0
then

8: F F [{(u, v)}
9: par[u0] v

0

10: return (V, F)

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n) 4 for n 1080.

Running time = time for 3 = O(m lg n).

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

25/88

Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists

26/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

27/88

Two Methods to Build a MST
1 Start from F ;, and add edges to F one by one until we obtain

a spanning tree

2 Start from F E, and remove edges from F one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

27/88

Two Methods to Build a MST
1 Start from F ;, and add edges to F one by one until we obtain

a spanning tree
2 Start from F E, and remove edges from F one by one until we

obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

27/88

Two Methods to Build a MST
1 Start from F ;, and add edges to F one by one until we obtain

a spanning tree
2 Start from F E, and remove edges from F one by one until we

obtain a spanning tree

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

27/88

Two Methods to Build a MST
1 Start from F ;, and add edges to F one by one until we obtain

a spanning tree
2 Start from F E, and remove edges from F one by one until we

obtain a spanning tree

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

27/88

Two Methods to Build a MST
1 Start from F ;, and add edges to F one by one until we obtain

a spanning tree
2 Start from F E, and remove edges from F one by one until we

obtain a spanning tree

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

28/88

Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.

29/88

Reverse Kruskal’s Algorithm

MST-Greedy(G,w)
1: F E

2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V, F \ {e}) is connected then

5: F F \ {e}
6: return (V, F)

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

13

1411

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

13

1411

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

13

11

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

13

11

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

11

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

11

12
7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

11

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

11

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

7 6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

6

30/88

Reverse Kruskal’s Algorithm: Example

a i

b

h g

c d

f

e

5

8

2

1

4

3

9

10

31/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

32/88

Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.

32/88

Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.

32/88

Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.

33/88

Lemma It is safe to include the lightest edge incident to a.

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [{e⇤} is a spanning tree with w(T 0) w(T)

33/88

Lemma It is safe to include the lightest edge incident to a.

a

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [{e⇤} is a spanning tree with w(T 0) w(T)

33/88

Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e⇤ incident to a

C

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [{e⇤} is a spanning tree with w(T 0) w(T)

33/88

Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e⇤ incident to a

C

e

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [{e⇤} is a spanning tree with w(T 0) w(T)

33/88

Lemma It is safe to include the lightest edge incident to a.

a

lightest edge e⇤ incident to a

C

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [{e⇤} is a spanning tree with w(T 0) w(T)

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

34/88

Prim’s Algorithm: Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

35/88

Greedy Algorithm

MST-Greedy1(G,w)
1: S {s}, where s is arbitrary vertex in V

2: F ;
3: while S 6= V do

4: (u, v) lightest edge between S and V \ S,
where u 2 S and v 2 V \ S

5: S S [{v}
6: F F [{(u, v)}
7: return (V, F)

Running time of naive implementation: O(nm)

35/88

Greedy Algorithm

MST-Greedy1(G,w)
1: S {s}, where s is arbitrary vertex in V

2: F ;
3: while S 6= V do

4: (u, v) lightest edge between S and V \ S,
where u 2 S and v 2 V \ S

5: S S [{v}
6: F F [{(u, v)}
7: return (V, F)

Running time of naive implementation: O(nm)

36/88

Prim’s Algorithm: E�cient Implementation of
Greedy Algorithm

For every v 2 V \ S maintain
d[v] = minu2S:(u,v)2E w(u, v):

the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (3, f)

(10, f)

37/88

Prim’s Algorithm: E�cient Implementation of
Greedy Algorithm

For every v 2 V \ S maintain

d[v] = minu2S:(u,v)2E w(u, v):
the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S

In every iteration

Pick u 2 V \ S with the smallest d[u] value

Add (⇡[u], u) to F

Add u to S, update d and ⇡ values.

38/88

Prim’s Algorithm

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: while S 6= V do

4: u vertex in V \ S with the minimum d[u]
5: S S [{u}
6: for each v 2 V \ S such that (u, v) 2 E do

7: if w(u, v) < d[v] then
8: d[v] w(u, v)
9: ⇡[v] u

10: return
�
(u, ⇡[u])|u 2 V \ {s}

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(5, a)

(12, a)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(5, a)

(12, a)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(5, a)

(12, a)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(8, b)

(11, b)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(8, b)

(11, b)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(8, b)

(11, b)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(11, b)

(2, c)

(4, c)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(11, b)

(2, c)

(4, c)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(11, b)

(2, c)

(4, c)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (4, c)(6, i)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (4, c)(6, i)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (4, c)(6, i)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (3, f)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (3, f)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(7, i) (3, f)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(1, g)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(1, g)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(1, g)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(13, c)

(10, f)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(9, e)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(9, e)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(9, e)

39/88

Example

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

40/88

Prim’s Algorithm

For every v 2 V \ S maintain

d[v] = minu2S:(u,v)2E w(u, v):
the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S

In every iteration

Pick u 2 V \ S with the smallest d[u] value

extract min

Add (⇡[u], u) to F

Add u to S, update d and ⇡ values.

decrease key

Use a priority queue to support the operations

40/88

Prim’s Algorithm

For every v 2 V \ S maintain

d[v] = minu2S:(u,v)2E w(u, v):
the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S

In every iteration

Pick u 2 V \ S with the smallest d[u] value extract min

Add (⇡[u], u) to F

Add u to S, update d and ⇡ values. decrease key

Use a priority queue to support the operations

41/88

Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:

insert(v, key value): insert an element v, whose associated key
value is key value.

decrease key(v, new key value): decrease the key value of an
element v in queue to new key value

extract min(): return and remove the element in queue with the
smallest key value

· · ·

42/88

Prim’s Algorithm

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3:

4: while S 6= V do

5: u vertex in V \ S with the minimum d[u]
6: S S [{u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v)
10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}

43/88

Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S S [{u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v), Q.decrease key(v, d[v])

10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}

44/88

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)⇥ (time for extract min) + O(m)⇥ (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)

44/88

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)⇥ (time for extract min) + O(m)⇥ (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)

44/88

Running Time of Prim’s Algorithm Using Priority
Queue

O(n)⇥ (time for extract min) + O(m)⇥ (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)

45/88

Assumption Assume all edge weights are di↵erent.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .

(c, f) is in MST because of cut
�
{a, b, c, i}, V \ {a, b, c, i}

�

(i, g) is not in MST because no such cut exists

45/88

Assumption Assume all edge weights are di↵erent.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(c, f) is in MST because of cut
�
{a, b, c, i}, V \ {a, b, c, i}

�

(i, g) is not in MST because no such cut exists

45/88

Assumption Assume all edge weights are di↵erent.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

(c, f) is in MST because of cut
�
{a, b, c, i}, V \ {a, b, c, i}

�

(i, g) is not in MST because no such cut exists

46/88

“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

46/88

“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

46/88

“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

