Kruskal's Algorithm: Efficient Implementation of Greedy Algorithm

MST-Kruskal(G, w)

1:
$$F \leftarrow \emptyset$$

$$2: \ \mathcal{S} \leftarrow \{\{v\} : v \in V\}$$

- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u, v) \in E$ in the order do

5:
$$S_u \leftarrow \text{the set in } \mathcal{S} \text{ containing } u$$

6:
$$S_v \leftarrow \text{the set in } \mathcal{S} \text{ containing } v$$

7: **if**
$$S_u \neq S_v$$
 then

8:
$$F \leftarrow F \cup \{(u, v)\}$$

9:
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$$

10: return (V, F)

Running Time of Kruskal's Algorithm

MST-Kruskal(G, w)

- 1: $F \leftarrow \emptyset$
- 2: $\mathcal{S} \leftarrow \{\{v\} : v \in V\}$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v) \in E$ in the order do
- 5: $S_u \leftarrow \text{the set in } \mathcal{S} \text{ containing } u$
- 6: $S_v \leftarrow$ the set in \mathcal{S} containing v
- 7: if $S_u \neq S_v$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$

10: return (V, F)

Use union-find data structure to support 2, 5, 6, 7, 9.

- $\bullet~V:$ ground set
- We need to maintain a partition of V and support following operations:
 - Check if u and v are in the same set of the partition
 - Merge two sets in partition

• $V = \{1, 2, 3, \cdots, 16\}$

• Partition: $\{2, 3, 5, 9, 10, 12, 15\}, \{1, 7, 13, 16\}, \{4, 8, 11\}, \{6, 14\}$

• par[i]: parent of *i*, $(par[i] = \bot \text{ if } i \text{ is a root})$.

• Q: how can we check if u and v are in the same set?

• Q: how can we check if u and v are in the same set?

• A: Check if root(u) = root(v).

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and $r': par[r] \leftarrow r'$.

- Q: how can we check if u and v are in the same set?
- A: Check if root(u) = root(v).
- root(u): the root of the tree containing u
- Merge the trees with root r and $r': par[r] \leftarrow r'$.

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: **return** root(par[v])

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: **return** root(par[v])
- Problem: the tree might too deep; running time might be large

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: **return** root(par[v])
- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

root(v)	root(v)
1: if $par[v] = \bot$ then	1: if $par[v] = \bot$ then 2: return v
2: return <i>v</i> 3: else	3: else 4: $par[v] \leftarrow root(par[v])$
4: return $root(par[v])$	5: return $par[v]$

- Problem: the tree might too deep; running time might be large
- Improvement: all vertices in the path directly point to the root, saving time in the future.

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: return par[v]

- 1: if $par[v] = \bot$ then
- 2: **return** *v*
- 3: **else**
- 4: $par[v] \leftarrow root(par[v])$
- 5: return par[v]

1: $F \leftarrow \emptyset$ 2: $\mathcal{S} \leftarrow \{\{v\} : v \in V\}$ 3: sort the edges of E in non-decreasing order of weights w4: for each edge $(u, v) \in E$ in the order do 5: $S_u \leftarrow$ the set in \mathcal{S} containing u6: $S_v \leftarrow$ the set in \mathcal{S} containing v7: if $S_u \neq S_v$ then 8: $F \leftarrow F \cup \{(u, v)\}$ 9: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}$

10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v)\in E$ in the order $\operatorname{\mathbf{do}}$
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v)\in E$ in the order $\operatorname{\mathbf{do}}$
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

• 2,5,6,7,9 takes time $O(m\alpha(n))$

• $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.

- 1: $F \leftarrow \emptyset$
- 2: for every $v \in V$ do: $par[v] \leftarrow \bot$
- 3: sort the edges of ${\boldsymbol E}$ in non-decreasing order of weights ${\boldsymbol w}$
- 4: for each edge $(u,v)\in E$ in the order $\operatorname{\mathbf{do}}$
- 5: $u' \leftarrow \operatorname{root}(u)$
- 6: $v' \leftarrow \operatorname{root}(v)$
- 7: if $u' \neq v'$ then
- 8: $F \leftarrow F \cup \{(u, v)\}$
- 9: $par[u'] \leftarrow v'$

10: return (V, F)

• 2,5,6,7,9 takes time $O(m\alpha(n))$

- $\alpha(n)$ is very slow-growing: $\alpha(n) \le 4$ for $n \le 10^{80}$.
- Running time = time for $\mathbf{3} = O(m \lg n)$.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

• (i,g) is not in the MST because of cycle (i,c,f,g)

Assumption Assume all edge weights are different.

Lemma An edge $e \in E$ is not in the MST, if and only if there is cycle C in G in which e is the heaviest edge.

- (i,g) is not in the MST because of cycle (i,c,f,g)
- (e, f) is in the MST because no such cycle exists

Outline

Minimum Spanning Tree Kruskal's Algorithm Reverse-Kruskal's Algorithm Prim's Algorithm

Single Source Shortest Paths
Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

• Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- **Q:** Which edge can be safely excluded from the MST?
- A: The heaviest non-bridge edge.

- Start from $F \leftarrow \emptyset$, and add edges to F one by one until we obtain a spanning tree
- **②** Start from $F \leftarrow E$, and remove edges from F one by one until we obtain a spanning tree

- **Q:** Which edge can be safely excluded from the MST?
- A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.

Lemma It is safe to exclude the heaviest non-bridge edge: there is a MST that does not contain the heaviest non-bridge edge.

$\mathsf{MST}\text{-}\mathsf{Greedy}(G, w)$

- 1: $F \leftarrow E$
- 2: sort E in non-increasing order of weights
- 3: for every e in this order do
- 4: if $(V, F \setminus \{e\})$ is connected then
- 5: $F \leftarrow F \setminus \{e\}$

6: return (V, F)

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
 Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

Design Greedy Strategy for MST

• Recall the greedy strategy for Kruskal's algorithm: choose the edge with the smallest weight.

• Greedy strategy for Prim's algorithm: choose the lightest edge incident to *a*.

- $\bullet~$ Let T~ be a MST
- $\bullet\,$ Consider all components obtained by removing a from T

- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C

- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C

- Let T be a MST
- $\bullet\,$ Consider all components obtained by removing a from T
- \bullet Let e^* be the lightest edge incident to a and e^* connects a to component C
- $\bullet \ \mbox{Let} \ e \ \mbox{be}$ the edge in T connecting $a \ \mbox{to} \ C$
- $T' = T \setminus \{e\} \cup \{e^*\}$ is a spanning tree with $w(T') \leq w(T)$

$\mathsf{MST-Greedy1}(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- 2: $F \leftarrow \emptyset$
- 3: while $S \neq V$ do
- 4: $(u, v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S,$ where $u \in S$ and $v \in V \setminus S$
- 5: $S \leftarrow S \cup \{v\}$
- $6: \qquad F \leftarrow F \cup \{(u,v)\}$
- 7: return (V, F)

$\mathsf{MST-Greedy1}(G, w)$

- 1: $S \leftarrow \{s\}$, where s is arbitrary vertex in V
- 2: $F \leftarrow \emptyset$
- 3: while $S \neq V$ do
- 4: $(u, v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S$, where $u \in S$ and $v \in V \setminus S$
- 5: $S \leftarrow S \cup \{v\}$
- $6: \qquad F \leftarrow F \cup \{(u, v)\}$

7: return (V, F)

• Running time of naive implementation: O(nm)

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain • $d[v] = \min_{u \in S:(u,v) \in E} w(u, v)$: the weight of the lightest edge between v and S• $\pi[v] = \arg \min_{u \in S:(u,v) \in E} w(u, v)$: $(\pi[v], v)$ is the lightest edge between v and S

Prim's Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

• $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi[v] = \arg\min_{u \in S:(u,v) \in E} w(u,v)$$
:
 $(\pi[v],v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d[u] value
- \bullet Add $(\pi[u],u)$ to F
- Add u to S, update d and π values.

Prim's Algorithm

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d[v] \leftarrow \infty \text{ for every } v \in V \setminus \{s\}$ 3: while $S \neq V \text{ do}$ 4: $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d[v] then 8: $d[v] \leftarrow w(u, v)$ 9: $\pi[v] \leftarrow u$

10: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$

For every $v \in V \setminus S$ maintain

• $d[v] = \min_{u \in S:(u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi[v] = \arg \min_{u \in S:(u,v) \in E} w(u, v)$$
:
 $(\pi[v], v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d[u] value
- $\bullet~ \operatorname{Add}~(\pi[u],u)$ to F
- Add u to S, update d and π values.

For every $v \in V \setminus S$ maintain

• $d[v] = \min_{u \in S: (u,v) \in E} w(u,v)$: the weight of the lightest edge between v and S

•
$$\pi[v] = \arg \min_{u \in S:(u,v) \in E} w(u,v)$$
:
 $(\pi[v], v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest d[u] value extract_min
- $\bullet \ \operatorname{Add} \ (\pi[u], u) \ \mathrm{to} \ F$
- Add u to S, update d and π values.

decrease_key

Use a priority queue to support the operations

Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- insert(v, key_value): insert an element v, whose associated key value is key_value.
- decrease_key(v, new_key_value): decrease the key value of an element v in queue to new_key_value
- extract_min(): return and remove the element in queue with the smallest key value

o . . .

Prim's Algorithm

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: 4: while $S \neq V$ do $u \leftarrow$ vertex in $V \setminus S$ with the minimum d[u]5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d[v] then 8: $d[v] \leftarrow w(u, v)$ 9: $\pi[v] \leftarrow u$ 10: 11: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$

Prim's Algorithm Using Priority Queue

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d[v])4: while $S \neq V$ do $u \leftarrow Q.\mathsf{extract_min}()$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d[v] then 8: $d[v] \leftarrow w(u, v), Q.\mathsf{decrease_key}(v, d[v])$ 9: $\pi[v] \leftarrow u$ 10: 11: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$

Running Time of Prim's Algorithm Using Priority Queue

$O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

(c, f) is in MST because of cut ({a, b, c, i}, V \ {a, b, c, i})
(i, g) is not in MST because no such cut exists

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.