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Kruskal’s Algorithm: E�cient Implementation of
Greedy Algorithm

MST-Kruskal(G, w)
1: F  ;
2: S  {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su  the set in S containing u

6: Sv  the set in S containing v

7: if Su 6= Sv then

8: F  F [ {(u, v)}
9: S  S \ {Su} \ {Sv} [ {Su [ Sv}

10: return (V, F )
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Running Time of Kruskal’s Algorithm

MST-Kruskal(G, w)
1: F  ;
2: S  {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su  the set in S containing u

6: Sv  the set in S containing v

7: if Su 6= Sv then

8: F  F [ {(u, v)}
9: S  S \ {Su} \ {Sv} [ {Su [ Sv}

10: return (V, F )

Use union-find data structure to support 2 , 5 , 6 , 7 , 9 .
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Union-Find Data Structure

V : ground set

We need to maintain a partition of V and support following
operations:
Check if u and v are in the same set of the partition
Merge two sets in partition



19/88

V = {1, 2, 3, · · · , 16}
Partition: {2, 3, 5, 9, 10, 12, 15}, {1, 7, 13, 16}, {4, 8, 11}, {6, 14}
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par[i]: parent of i, (par[i] = ? if i is a root).
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Union-Find Data Structure
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Q: how can we check if u and v are in the same set?

A: Check if root(u) = root(v).

root(u): the root of the tree containing u

Merge the trees with root r and r
0: par[r] r

0.
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Union-Find Data Structure

root(v)
1: if par[v] = ? then

2: return v

3: else

4: return root(par[v])

root(v)
1: if par[v] = ? then

2: return v

3: else

4: par[v]  root(par[v])

5: return par[v]

Problem: the tree might too deep; running time might be large

Improvement: all vertices in the path directly point to the root,
saving time in the future.
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Union-Find Data Structure
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MST-Kruskal(G, w)
1: F  ;
2: S  {{v} : v 2 V }
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: Su  the set in S containing u

6: Sv  the set in S containing v

7: if Su 6= Sv then

8: F  F [ {(u, v)}
9: S  S \ {Su} \ {Sv} [ {Su [ Sv}

10: return (V, F )
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MST-Kruskal(G, w)
1: F  ;
2: for every v 2 V do: par[v] ?
3: sort the edges of E in non-decreasing order of weights w
4: for each edge (u, v) 2 E in the order do
5: u

0  root(u)
6: v

0  root(v)
7: if u

0 6= v
0
then

8: F  F [ {(u, v)}
9: par[u0] v

0

10: return (V, F )

2 , 5 , 6 , 7 , 9 takes time O(m↵(n))

↵(n) is very slow-growing: ↵(n)  4 for n  1080.

Running time = time for 3 = O(m lg n).
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Assumption Assume all edge weights are di↵erent.

Lemma An edge e 2 E is not in the MST, if and only if there is
cycle C in G in which e is the heaviest edge.
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(i, g) is not in the MST because of cycle (i, c, f, g)

(e, f) is in the MST because no such cycle exists
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Two Methods to Build a MST
1 Start from F  ;, and add edges to F one by one until we obtain

a spanning tree

2 Start from F  E, and remove edges from F one by one until we
obtain a spanning tree

Q: Which edge can be safely excluded from the MST?

A: The heaviest non-bridge edge.

Def. A bridge is an edge whose removal disconnects the graph.
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Lemma It is safe to exclude the heaviest non-bridge edge: there is a
MST that does not contain the heaviest non-bridge edge.
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Reverse Kruskal’s Algorithm

MST-Greedy(G,w)
1: F  E

2: sort E in non-increasing order of weights
3: for every e in this order do
4: if (V, F \ {e}) is connected then

5: F  F \ {e}
6: return (V, F )
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Reverse Kruskal’s Algorithm: Example
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Design Greedy Strategy for MST

Recall the greedy strategy for Kruskal’s algorithm: choose the
edge with the smallest weight.

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Greedy strategy for Prim’s algorithm: choose the lightest edge
incident to a.
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Lemma It is safe to include the lightest edge incident to a.

Proof.
Let T be a MST

Consider all components obtained by removing a from T

Let e⇤ be the lightest edge incident to a and e
⇤ connects a to

component C

Let e be the edge in T connecting a to C

T
0 = T \ {e} [ {e⇤} is a spanning tree with w(T 0)  w(T )
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Prim’s Algorithm: Example
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Greedy Algorithm

MST-Greedy1(G,w)
1: S  {s}, where s is arbitrary vertex in V

2: F  ;
3: while S 6= V do

4: (u, v) lightest edge between S and V \ S,
where u 2 S and v 2 V \ S

5: S  S [ {v}
6: F  F [ {(u, v)}
7: return (V, F )

Running time of naive implementation: O(nm)
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5: S  S [ {v}
6: F  F [ {(u, v)}
7: return (V, F )

Running time of naive implementation: O(nm)
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Prim’s Algorithm: E�cient Implementation of
Greedy Algorithm

For every v 2 V \ S maintain
d[v] = minu2S:(u,v)2E w(u, v):

the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S
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⇡[v] = argminu2S:(u,v)2E w(u, v):
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In every iteration
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Prim’s Algorithm

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: while S 6= V do

4: u vertex in V \ S with the minimum d[u]
5: S  S [ {u}
6: for each v 2 V \ S such that (u, v) 2 E do

7: if w(u, v) < d[v] then
8: d[v] w(u, v)
9: ⇡[v] u

10: return
�
(u, ⇡[u])|u 2 V \ {s}
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Prim’s Algorithm

For every v 2 V \ S maintain

d[v] = minu2S:(u,v)2E w(u, v):
the weight of the lightest edge between v and S

⇡[v] = argminu2S:(u,v)2E w(u, v):
(⇡[v], v) is the lightest edge between v and S

In every iteration

Pick u 2 V \ S with the smallest d[u] value

extract min

Add (⇡[u], u) to F

Add u to S, update d and ⇡ values.

decrease key

Use a priority queue to support the operations
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Add (⇡[u], u) to F
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Def. A priority queue is an abstract data structure that maintains a
set U of elements, each with an associated key value, and supports
the following operations:

insert(v, key value): insert an element v, whose associated key
value is key value.

decrease key(v, new key value): decrease the key value of an
element v in queue to new key value

extract min(): return and remove the element in queue with the
smallest key value

· · ·
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Prim’s Algorithm

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3:

4: while S 6= V do

5: u vertex in V \ S with the minimum d[u]
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v)
10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}
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Prim’s Algorithm Using Priority Queue

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v), Q.decrease key(v, d[v])

10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}
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Running Time of Prim’s Algorithm Using Priority
Queue

O(n)⇥ (time for extract min) + O(m)⇥ (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)
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Assumption Assume all edge weights are di↵erent.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .

(c, f) is in MST because of cut
�
{a, b, c, i}, V \ {a, b, c, i}

�

(i, g) is not in MST because no such cut exists
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“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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