
62/78

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

62/78

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

62/78

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

62/78

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X

63/78

A Strategy of Polynomial Reduction

Given an instance sY of problem Y , show how to construct in
polynomial time an instance sX of problem such that:
sY is a yes-instance of Y) sX is a yes-instance of X

sX is a yes-instance of X) sY is a yes-instance of Y

64/78

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1

Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

65/78

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time

66/78

Dealing with NP-Hard Problems

Faster exponential time algorithms

Solving the problem for special cases

Fixed parameter tractability

Approximation algorithms

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))

2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))

Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))

In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

67/78

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices

68/78

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees (Quiz 10)

bounded tree-width graphs

interval graphs

· · ·

68/78

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees (Quiz 10)

bounded tree-width graphs

interval graphs

· · ·

68/78

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees (Quiz 10)

bounded tree-width graphs

interval graphs

· · ·

68/78

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees (Quiz 10)

bounded tree-width graphs

interval graphs

· · ·

68/78

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees (Quiz 10)

bounded tree-width graphs

interval graphs

· · ·

69/78

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·

69/78

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·

69/78

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·

69/78

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·

70/78

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.

70/78

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.

70/78

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)

Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.

70/78

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.

70/78

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.

71/78

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

71/78

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

71/78

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

71/78

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover

72/78

2-Approximation Algorithm for Vertex Cover

VertexCover(G)
1: C ;
2: while E 6= ; do
3: select an edge (u, v) 2 E, C C [{u, v}
4: Remove from E every edge incident on either u or v

5: return C

Let the set C and C
⇤ be the sets output by above algorithm and

an optimal alg, respectively. Let S be the set of edges selected.

Since no two edge in S are covered by the same vertex (Once an
edge is picked in line 3, all other edges that are incident on its
endpoints are removed from E in line 4), we have |C⇤| � |S|;
As we have added both vertices of edge (u, v), we get |C| = 2|S|
but C⇤ have to add one of the two, thus, |C|/|C⇤| 2.

73/78

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

74/78

Summary

We consider decision problems

Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

Alice has a supercomputer, fast enough to run an exponential
time algorithm

Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance

75/78

Summary

Def. B is an e�cient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t

there is a polynomial function p such that, X(s) = 1 if and only if
there is string t such that |t| p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an e�cient certifier.

76/78

Summary

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

If any NP-complete problem can be solved in polynomial time,
then P = NP

Unless P = NP , a NP-complete problem can not be solved in
polynomial time

77/78

Summary

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique

78/78

Summary

Proof of NP-Completeness for Circuit-Sat
Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a e�cient certifier.

Given a problem X 2 NP, let B(s, t) be the certifier

Convert B(s, t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

Proof of NP-Completeness for other problems by reductions

