A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_{Y} for Y, we only construct one instance s_{X} for X

A Strategy of Polynomial Reduction

- Given an instance s_{Y} of problem Y, show how to construct in polynomial time an instance s_{X} of problem such that:
- s_{Y} is a yes-instance of $Y \Rightarrow s_{X}$ is a yes-instance of X
- s_{X} is a yes-instance of $X \Rightarrow s_{Y}$ is a yes-instance of Y

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Q: How far away are we from proving or disproving $P=N P$?

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$
- Best lower bound is $\Omega(n)$

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$
- Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$
- Better algorithm: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$
- Better algorithm: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees (Quiz 10)

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees (Quiz 10)
- bounded tree-width graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees (Quiz 10)
- bounded tree-width graphs
- interval graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees (Quiz 10)
- bounded tree-width graphs
- interval graphs
- ...

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)
- trees

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)
- trees

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$
- Running time is $f(k) n^{c}$ for some c independent of k

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$
- Running time is $f(k) n^{c}$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

2-Approximation Algorithm for Vertex Cover

VertexCover (G)

1: $C \leftarrow \emptyset$
2: while $E \neq \emptyset$ do
3: \quad select an edge $(u, v) \in E, C \leftarrow C \cup\{u, v\}$
4: \quad Remove from E every edge incident on either u or v
5: return C

- Let the set C and C^{*} be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3 , all other edges that are incident on its endpoints are removed from E in line 4), we have $\left|C^{*}\right| \geq|S|$;
- As we have added both vertices of edge (u, v), we get $|C|=2|S|$ but C^{*} have to add one of the two, thus, $|C| /\left|C^{*}\right| \leq 2$.

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Summary

- We consider decision problems
- Inputs are encoded as $\{0,1\}$-strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

Summary

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- If any NP-complete problem can be solved in polynomial time, then $P=N P$
- Unless $P=N P$, a NP-complete problem can not be solved in polynomial time

Summary

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in \mathrm{NP}$, let $B(s, t)$ be the certifier
- Convert $B(s, t)$ to a circuit and hard-wire s to the input gates
- s is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions

