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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.
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Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ✓ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard
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Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with _,^,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ^ x2) _ (¬x1 ^ ¬x3) _ x1 _ (¬x2 ^ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

Formula Satisfiablity is NP-hard
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Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is
either 0 or 1 (yes/no).

When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version
X

0 of the problem. If we have a polynomial time algorithm for the
decision version X

0, we can solve the original problem X in
polynomial time.
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Optimization to Decision

Shortest Path
Input: graph G = (V,E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set
Input: a graph G and a bound k

Output: whether there is an independent set of size at least k
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Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Input: (3, 6, 100, 9, 60)

Binary: (11, 110, 1100100, 1001, 111100)

String:

11/110/1100100/ 1001/111100/
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Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

(0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)

Encode the sequence into a binary string as before
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Encoding

Def. The size of an input is the length of the encoded string s for
the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a “natural” encoding. We only care
whether the running time is polynomial or not
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Define Problem as a Function
X : {0, 1}⇤ ! {0, 1}

Def. A decision problem X is a function mapping {0, 1}⇤ to {0, 1}
such that for any s 2 {0, 1}⇤, X(s) is the correct output for input s.

{0, 1}⇤: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any
binary string s

Def. A has a polynomial running time if there is a polynomial
function p(·) so that for every string s, the algorithm A terminates
on s in at most p(|s|) steps.
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Complexity Class P

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time.

The decision versions of interval scheduling, shortest path and
minimum spanning tree all in P.
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Certifier for Hamiltonian Cycle (HC)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for HC

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given a graph G = (V,E) with a HC, how can Alice convince
Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is
really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the
algorithm Bob runs is called a certifier.
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Certifier for Independent Set (Ind-Set)

Alice has a supercomputer, fast enough to run the 2O(n) time
algorithm for Ind-Set

Bob has a slow computer, which can only run an O(n3)-time
algorithm

Q: Given graph G = (V,E) and integer k, such that there is an
independent set of size k in G, how can Alice convince Bob that
there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a
independent set in G.

Certificate: a set of size k

Certifier: check if the given set is really an independent set
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The Complexity Class NP

Def. B is an e�cient certifier for a problem X if

B is a polynomial-time algorithm that takes two input strings s
and t, and outputs 0 or 1.

there is a polynomial function p such that, X(s) = 1 if and only if
there is string t such that |t|  p(|s|) and B(s, t) = 1.

The string t such that B(s, t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an e�cient certifier.
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HC (Hamiltonian Cycle) 2 NP

Input: Graph G

Certificate: a permutation S of V that forms a Hamiltonian Cycle

|encoding(S)|  p(|encoding(G)|) for some polynomial function p

Certifier B: B(G,S) = 1 if and only if S gives an HC in G

Clearly, B runs in polynomial time

HC(G) = 1 () 9S, B(G,S) = 1
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MIS (Maximum Independent Set) 2 NP

Input: graph G = (V,E) and integer k

Certificate: a set S ✓ V of size k

|encoding(S)|  p(|encoding(G, k)|) for some polynomial function
p

Certifier B: B((G, k), S) = 1 if and only if S is an independent
set in G

Clearly, B runs in polynomial time

MIS(G, k) = 1 () 9S, B((G, k), S) = 1
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Circuit Satisfiablity (Circuit-Sat) Problem
Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat 2 NP?
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HC
Input: graph G = (V,E)

Output: whether G does not contain a Hamiltonian cycle

Is HC 2 NP?

Can Alice convince Bob that G is a yes-instance (i.e, G does not
contain a HC), if this is true.

Unlikely

Alice can only convince Bob that G is a no-instance

HC 2 Co-NP
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The Complexity Class Co-NP

Def. For a problem X, the problem X is the problem such that
X(s) = 1 if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that X 2 NP.
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Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem
Input: a boolean formula

Output: whether the formula is a tautology

e.g. (¬x1 ^ x2) _ (¬x1 ^ ¬x3) _ x1 _ (¬x2 ^ x3) is a tautology

Bob can certify that a formula is not a tautology

Thus Tautology 2 Co-NP
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P ✓ NP

Let X 2 P and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since X 2 P, Bob can check whether X(s) = 1 by himself,
without Alice’s help.

The certificate is an empty string

Thus, X 2 NP and P ✓ NP

Similarly, P ✓ Co-NP, thus P ✓ NP \ Co-NP
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Is P = NP?

A famous, big, and fundamental open problem in computer science

Little progress has been made

Most researchers believe P 6= NP

It would be too amazing if P = NP: if one can check a solution
e�ciently, then one can find a solution e�ciently

We assume P 6= NP and prove that problems do not have
polynomial time algorithms.

We said it is unlikely that Hamiltonian Cycle can be solved in
polynomial time:

if P 6= NP, then HC /2 P

HC /2 P, unless P = NP
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Is NP = Co-NP?

Again, a big open problem

Most researchers believe NP 6= Co-NP.
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4 Possibilities of Relationships

Notice that X 2 NP () X 2 Co-NP and P ✓ NP \ Co-NP

P = NP = Co-NP
NP = Co-NP

P

NP Co-NPP = NP \ Co-NP
NP

Co-NP

NP \ Co-NP

P

People commonly believe we are in the 4th scenario
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Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary
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Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

To prove positive results:

Suppose Y P X. If X can be solved in polynomial time, then Y

can be solved in polynomial time.

To prove negative results:

Suppose Y P X. If Y cannot be solved in polynomial time, then X

cannot be solved in polynomial time.
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s, t 2 V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP P HC.

Obs. G has a HP from s to t if and only if graph on right side has a
HC.
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