Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

Def. A problem X is called NP-complete if

- $\ \ \, \mathbf{0} \ \ \, X \in \mathsf{NP}, \mathsf{ and}$
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Def. A problem X is called NP-hard if

 $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

• NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

 NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

 NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called NP-complete if • $X \in NP$, and • $Y \leq_P X$ for every $Y \in NP$.

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem $X \in NP$ such that every problem $Y \in NP$ is polynomial time reducible to X? Are we asking for too much?

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?
 - No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Input: a circuit

Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

- Then, we can show that any problem Y ∈ NP can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit-Sat$ as an example.

 $\operatorname{check-HC}(G,S)$

• Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

 $\operatorname{check-HC}(G,S)$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C^\prime for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

 $\operatorname{3-CNF}$ (conjunctive normal form) is a special case of formula:

• Boolean variables: x_1, x_2, \cdots, x_n

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

• To satisfy a 3-CNF, we need to satisfy all clauses

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

• Associate every wire with a new variable

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5
	0	0	0
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1
· · ·	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0

 $x_5 \leftrightarrow x_1 \lor x_2$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
· · ·	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

45/78

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

2
15

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

				1
Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1
				4

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
· · · -	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
· · · ·	1	0	1	1
	1	1	0	0
	1	1	1	1
				43

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
· <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
(1 _))	1	0	1	1
	1	1	0	0
	1	1	1	1
				4

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
Convert each clause to a 5-CIVI	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
$(x_1 v x_2 v x_5) / ($	1	1	0	0
	1	1	1	1 4

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
$(x_1 \vee x_2 \vee x_5) \wedge (x_1 \vee x_2 \vee x_5)$	1	1	0	0
	1	1	1	1 45/78
				+J/10

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
Convert each clause to a 5-CNF	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg x_1 \lor x_2 \lor x_5) \land$	1	0	1	1
(•)	1	1	0	0
$(\neg x_1 \lor \neg x_2 \lor x_5)$	1	1	1	1 45/78

• Circuit \iff Formula \iff 3-CNF

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem Input: G = (V, E), kOutput: whether there is an independent set of size k in G

|3-Sat $\leq_P \mathsf{Ind}$ -Set

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- A clause ⇒ a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size k = #clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- $\bullet\,$ satisfying assignment $\Rightarrow\,$ independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every clause, at least 1 literal is satisfied

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

• $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

• For every group, exactly one literal is selected in IS

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$

•
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4)$$

- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_i is selected in IS, set $x_i = 1$
- If $\neg x_i$ is selected in IS, set $x_i = 0$
- Otherwise, set x_i arbitrarily

Reductions of NP-Complete Problems

Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

Clique Problem

Input: G = (V, E) and integer k > 0,

Output: whether there exists a clique of size k in G

• What is the relationship between Clique and Ind-Set?

Def. Given a graph G = (V, E), define $\overline{G} = (V, \overline{E})$ be the graph such that $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \overline{G} .

Reductions of NP-Complete Problems

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph G = (V, E), a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: G = (V, E) and integer k

Output: whether there is a vertex cover of G of size at most k

$Vertex-Cover =_P Ind-Set$

Q: What is the relationship between Vertex-Cover and Ind-Set?

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V, E) if and only if $V \setminus S$ is an independent set of G.

Reductions of NP-Complete Problems

Def. A *k*-coloring of G = (V, E) is a function $f: V \to \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. *G* is *k*-colorable if there is a *k*-coloring of *G*.

Def. A *k*-coloring of G = (V, E) is a function $f: V \to \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. G is *k*-colorable if there is a *k*-coloring of G.

Def. A *k*-coloring of G = (V, E) is a function $f: V \to \{1, 2, 3, \dots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v)$. *G* is *k*-colorable if there is a *k*-coloring of *G*.

k-coloring problem

Input: a graph G = (V, E)

Output: whether G is k-colorable or not

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.

• Construct the base graph

Base Graph

• Construct the base graph

Base Graph

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph $x_1 \lor \neg x_2 \lor x_3$

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

