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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s, t 2 V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP P HC.

s

t

s

t

G G

Obs. G has a HP from s to t if and only if graph on right side has a
HC.
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NP-Completeness

Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

Theorem If X is NP-complete and X 2 P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)
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NP-Completeness

Def. A problem X is called NP-hard if

1 X 2 NP, and

2 Y P X for every Y 2 NP.

Theorem If X is NP-complete and X 2 P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)
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Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

How can we find a problem X 2 NP such that every problem Y 2
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems



36/78

Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

How can we find a problem X 2 NP such that every problem Y 2
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems



36/78

Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

How can we find a problem X 2 NP such that every problem Y 2
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems



37/78

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

x1
x2

x3
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Circuit-Sat is NP-Complete

key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y 2 NP can be reduced to
Circuit-Sat.

We prove HC P Circuit-Sat as an example.
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HC P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C 0 for the algorithm check-HC
hard-wire the instance G to the circuit C 0 to obtain the circuit C
G is a yes-instance if and only if C is satisfiable
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Y P Circuit-Sat, For Every Y 2NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C 0 for the algorithm check-Y

hard-wire the instance s to the circuit C 0 to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 _ ¬x4,
x1 _ x8 _ ¬x9, ¬x2 _ ¬x5 _ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ ¬x4)
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3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ ¬x4)
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Circuit-Sat P 3-Sat

x1
x2

x3

Associate every wire with a new variable
The circuit is equivalent to the following formula:

(x4 = ¬x3) ^ (x5 = x1 _ x2) ^ (x6 = ¬x4)

^ (x7 = x1 ^ x2 ^ x4) ^ (x8 = x5 _ x6)

^ (x9 = x6 _ x7) ^ (x10 = x8 ^ x9 ^ x7) ^ x10
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Circuit-Sat P 3-Sat

Circuit () Formula () 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat P 3-Sat
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Recall: Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ✓ V such that
no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem
Input: G = (V,E), k

Output: whether there is an independent set of size k in G
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3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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Def. A clique in an undirected graph G = (V,E) is a subset S ✓ V

such that 8u, v 2 S we have (u, v) 2 E

Clique Problem
Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?
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Clique =P Ind-Set

Def. Given a graph G = (V,E), define G = (V,E) be the graph
such that (u, v) 2 E if and only if (u, v) /2 E.

Obs. S is an independent set in G if and only if S is a clique in G.
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Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ✓ V such that for every (u, v) 2 E then u 2 S or v 2 S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k
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Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.
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k-coloring problem

Def. A k-coloring of G = (V,E) is a
function f : V ! {1, 2, 3, · · · , k} so that
for every edge (u, v) 2 E, we have
f(u) 6= f(v). G is k-colorable if there is
a k-coloring of G.

k-coloring problem
Input: a graph G = (V,E)

Output: whether G is k-colorable or not
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2-Coloring Problem

Obs. A graph G is 2-colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

A: We check if G is bipartite.
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