Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

NP-Completeness

Def. A problem X is called NP-hard if
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Theorem If X is NP-complete and $X \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Def. A problem X is called NP-complete if

(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{P}} X$ for every $Y \in \mathrm{NP}$.

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?

Def. A problem X is called NP-complete if
(1) $X \in \mathrm{NP}$, and
(2) $Y \leq_{\mathrm{p}} X$ for every $Y \in \mathrm{NP}$.

- How can we find a problem $X \in$ NP such that every problem $Y \in$ NP is polynomial time reducible to X ? Are we asking for too much?
- No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)

Input: a circuit
Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Time $T \square \square$

Circuit-Sat is NP-Complete

- key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs $0 / 1$ with running time $T(n)$ can be converted into a circuit of size $p(T(n))$ for some polynomial function $p(\cdot)$.

Time $T \square \square$

- Then, we can show that any problem $Y \in \mathrm{NP}$ can be reduced to Circuit-Sat.
- We prove $\mathrm{HC} \leq_{P}$ Circuit-Sat as an example.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

$\mathrm{HC} \leq_{P}$ Circuit-Sat

check- $\mathrm{HC}(G, S)$

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C

$\mathrm{HC} \leq_{P}$ Circuit-Sat

- Let check- $\mathrm{HC}(G, S)$ be the certifier for the Hamiltonian cycle problem: check- $\mathrm{HC}(G, S)$ returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that check- $\mathrm{HC}(G, S)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-HC
- hard-wire the instance G to the circuit C^{\prime} to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in N P$

- Let check- $\mathrm{Y}(s, t)$ be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_{P}$ Circuit-Sat, For Every $Y \in N P$

- Let check- $\mathrm{Y}(s, t)$ be the certifier for problem Y : check- $\mathrm{Y}(s, t)$ returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that check- $\mathrm{Y}(s, t)$ returns 1
- Construct a circuit C^{\prime} for the algorithm check-Y
- hard-wire the instance s to the circuit C^{\prime} to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: $x_{1}, x_{2}, \cdots, x_{n}$

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: $x_{1}, x_{2}, \cdots, x_{n}$
- Literals: x_{i} or $\neg x_{i}$

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: $x_{1}, x_{2}, \cdots, x_{n}$
- Literals: x_{i} or $\neg x_{i}$
- Clause: disjunction ("or") of at most 3 literals: $x_{3} \vee \neg x_{4}$, $x_{1} \vee x_{8} \vee \neg x_{9}, \quad \neg x_{2} \vee \neg x_{5} \vee x_{7}$

3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

- Boolean variables: $x_{1}, x_{2}, \cdots, x_{n}$
- Literals: x_{i} or $\neg x_{i}$
- Clause: disjunction ("or") of at most 3 literals: $x_{3} \vee \neg x_{4}$, $x_{1} \vee x_{8} \vee \neg x_{9}, \quad \neg x_{2} \vee \neg x_{5} \vee x_{7}$
- 3-CNF formula: conjunction ("and") of clauses: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)$

3-Sat

3-Sat

Input: a 3-CNF formula
Output: whether the $3-$ CNF is satisfiable

3-Sat

3-Sat

Input: a 3-CNF formula
Output: whether the 3 -CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses

3-Sat

3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

3-Sat

3-Sat

Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=0$ satisfies $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)$

Circuit-Sat \leq_{P} 3-Sat

Circuit-Sat \leq_{P} 3-Sat

- Associate every wire with a new variable

Circuit-Sat $\leq{ }_{P}$ 3-Sat

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a $3-\mathrm{CNF}$

$$
x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a $3-\mathrm{CNF}$

$$
x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a $3-\mathrm{CNF}$

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \quad \wedge
\end{aligned}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \quad \wedge
\end{aligned}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee x_{5}\right)
\end{aligned} \quad \wedge .
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee x_{5}\right)
\end{aligned} \quad \wedge .
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{array}{ll}
x_{5}=x_{1} \vee x_{2} & \Leftrightarrow \\
\left(x_{1} \vee x_{2} \vee \neg x_{5}\right) & \wedge \\
\left(x_{1} \vee \neg x_{2} \vee x_{5}\right) & \wedge \\
\left(\neg x_{1} \vee x_{2} \vee x_{5}\right) & \wedge
\end{array}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{array}{ll}
x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
\left(x_{1} \vee x_{2} \vee \neg x_{5}\right) & \wedge \\
\left(x_{1} \vee \neg x_{2} \vee x_{5}\right) & \wedge \\
\left(\neg x_{1} \vee x_{2} \vee x_{5}\right) & \wedge
\end{array}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

$$
\begin{aligned}
& \left(x_{4}=\neg x_{3}\right) \wedge\left(x_{5}=x_{1} \vee x_{2}\right) \wedge\left(x_{6}=\neg x_{4}\right) \\
& \wedge\left(x_{7}=x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{8}=x_{5} \vee x_{6}\right) \\
& \wedge\left(x_{9}=x_{6} \vee x_{7}\right) \wedge\left(x_{10}=x_{8} \wedge x_{9} \wedge x_{7}\right) \wedge x_{10}
\end{aligned}
$$

Convert each clause to a 3-CNF

$$
\begin{aligned}
& x_{5}=x_{1} \vee x_{2} \quad \Leftrightarrow \\
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
& \left(x_{1} \vee \neg x_{2} \vee x_{5}\right) \\
& \left(\neg x_{1} \vee x_{2} \vee x_{5}\right) \\
& \wedge \\
& \left(\neg x_{1} \vee \neg x_{2} \vee x_{5}\right)
\end{aligned}
$$

x_{1}	x_{2}	x_{5}	$x_{5} \leftrightarrow x_{1} \vee x_{2}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Circuit-Sat \leq_{P} 3-Sat

- Circuit \Longleftrightarrow Formula \Longleftrightarrow 3-CNF

Circuit-Sat \leq_{P} 3-Sat

- Circuit \Longleftrightarrow Formula \Longleftrightarrow 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

Circuit-Sat $\leq{ }_{P}$ 3-Sat

- Circuit \Longleftrightarrow Formula \Longleftrightarrow 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

Circuit-Sat $\leq{ }_{P}$ 3-Sat

- Circuit \Longleftrightarrow Formula \Longleftrightarrow 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_{P} 3-Sat

Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G=(V, E), k$
Output: whether there is an independent set of size k in G

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- satisfying assignment \Rightarrow independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$
- If $\neg x_{i}$ is selected in IS, set $x_{i}=0$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$
- If $\neg x_{i}$ is selected in IS, set $x_{i}=0$
- Otherwise, set x_{i} arbitrarily

Reductions of NP-Complete Problems

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Clique Problem

Input: $G=(V, E)$ and integer $k>0$,
Output: whether there exists a clique of size k in G

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Clique Problem

Input: $G=(V, E)$ and integer $k>0$,
Output: whether there exists a clique of size k in G

- What is the relationship between Clique and Ind-Set?

Clique $=p$ Ind-Set

Def. Given a graph $G=(V, E)$, define $\bar{G}=(V, \bar{E})$ be the graph such that $(u, v) \in \bar{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \bar{G}.

Reductions of NP-Complete Problems

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G=(V, E)$ and integer k
Output: whether there is a vertex cover of G of size at most k

Vertex-Cover $=p$ Ind-Set

Vertex-Cover $={ }_{P}$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

Vertex-Cover $=p$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G=(V, E)$ if and only if $V \backslash S$ is an independent set of G.

Reductions of NP-Complete Problems

k-coloring problem

Def. A k-coloring of $G=(V, E)$ is a function $f: V \rightarrow\{1,2,3, \cdots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v) . G$ is k-colorable if there is a k-coloring of G.

k-coloring problem

Def. A k-coloring of $G=(V, E)$ is a function $f: V \rightarrow\{1,2,3, \cdots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v) . G$ is k-colorable if there is a k-coloring of G.

k-coloring problem

Def. A k-coloring of $G=(V, E)$ is a function $f: V \rightarrow\{1,2,3, \cdots, k\}$ so that for every edge $(u, v) \in E$, we have $f(u) \neq f(v) . G$ is k-colorable if there is a k-coloring of G.

k-coloring problem
Input: a graph $G=(V, E)$
Output: whether G is k-colorable or not

2-Coloring Problem

Obs. A graph G is 2 -colorable if and only if it is bipartite.

Q: How do we check if a graph G is 2-colorable?

2-Coloring Problem

Obs. A graph G is 2 -colorable if and only if it is bipartite.
Q: How do we check if a graph G is 2-colorable?
A: We check if G is bipartite.

3-SAT \leq_{P} 3-Coloring

- Construct the base graph

Base Graph

3-SAT \leq_{P} 3-Coloring

- Construct the base graph

Base Graph

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

Base Graph

$$
x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

3-SAT \leq_{P} 3-Coloring

- Construct the base graph
- Construct a gadget from each clause: gadget is 3-colorable if and only if the clause is satisfied.

$$
\text { Base Graph } \quad x_{1} \vee \neg x_{2} \vee x_{3}
$$

