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“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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s-t Shortest Paths
Input: (directed or undirected) graph G = (V,E), s, t 2 V

w : E ! R�0

Output: shortest path from s to t
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Single Source Shortest Paths
Input: (directed or undirected) graph G = (V,E), s 2 V

w : E ! R�0

Output: shortest paths from s to all other vertices v 2 V

Reason for Considering Single Source Shortest Paths
Problem

We do not know how to solve s-t shortest path problem more
e�ciently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight
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Single Source Shortest Paths
Input: directed graph G = (V,E), s 2 V

w : E ! R�0

Output: ⇡[v], v 2 V \ s: the parent of v in shortest path tree

d[v], v 2 V \ s: the length of shortest path from s to v
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Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s
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Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

Shortest Path Algorithm by Running BFS
1: replace (u, v) of length w(u, v) with a path of w(u, v)

unit-weight edges, for every (u, v) 2 E

2: run BFS
3: ⇡[v] vertex from which v is visited
4: d[v] index of the level containing v

Problem: w(u, v) may be too large!
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Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

4 1 1 1 1u v u v

Shortest Path Algorithm by Running BFS
1: replace (u, v) of length w(u, v) with a path of w(u, v)

unit-weight edges, for every (u, v) 2 E

2: run BFS virtually
3: ⇡[v] vertex from which v is visited
4: d[v] index of the level containing v

Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS Virtually
1: S  {s}, d(s) 0
2: while |S|  n do

3: find a v /2 S that minimizes min
u2S:(u,v)2E

{d[u] + w(u, v)}

4: S  S [ {v}
5: d[v] minu2S:(u,v)2E{d[u] + w(u, v)}
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Dijkstra’s Algorithm

Dijkstra(G,w, s)
1: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
2: while S 6= V do

3: u vertex in V \ S with the minimum d[u]
4: add u to S

5: for each v 2 V \ S such that (u, v) 2 E do

6: if d[u] + w(u, v) < d[v] then
7: d[v] d[u] + w(u, v)
8: ⇡[v] u

9: return (d, ⇡)

Running time = O(n2)
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Improved Running Time using Priority Queue

Dijkstra(G,w, s)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if d[u] + w(u, v) < d[v] then
9: d[v] d[u] + w(u, v), Q.decrease key(v, d[v])
10: ⇡[v] u

11: return (⇡, d)
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Recall: Prim’s Algorithm for MST

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v), Q.decrease key(v, d[v])

10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}
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Improved Running Time

Running time:
O(n)⇥ (time for extract min) +O(m)⇥ (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V,E), s 2 V

assume all vertices are reachable from s

w : E ! R
Output: shortest paths from s to all other vertices v 2 V

In transition graphs, negative weights make sense

If we sell a item: ‘having the item’ ! ‘not having the item’,
weight is negative (we gain money)

Dijkstra’s algorithm does not work any more!
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Q: What is the length of the shortest path from s to d?

A: �1

Def. A negative cycle is a cycle in which the total weight of edges is
negative.

Dealing with Negative Cycles

assume the input graph does not contain negative cycles, or

allow algorithm to report “negative cycle exists”
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Q: What is the length of the shortest simple path from s to d?

A: 1

Unfortunately, computing the shortest simple path between two
vertices is an NP-hard problem.
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algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph G = (V,E), s 2 V

assume all vertices are reachable from s

w : E ! R
Output: shortest paths from s to all other vertices v 2 V

first try: f [v]: length of shortest path from s to v

issue: do not know in which order we compute f [v]’s

f
`[v], ` 2 {0, 1, 2, 3 · · · , n� 1}, v 2 V : length of shortest path

from s to v that uses at most ` edges
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8

-2
-3-4

7

s

ab

c d

f
`[v], ` 2 {0, 1, 2, 3 · · · , n� 1}, v 2 V :

length of shortest path from s to v that uses
at most ` edges

f
2[a] =

6

f
3[a] =

2

f
`[v] =

8
>>>><

>>>>:

0

` = 0, v = s

1

` = 0, v 6= s

min

(

f
`�1[v]

minu:(u,v)2E
�
f
`�1[u] + w(u, v)

�

` > 0
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Dynamic Programming: Example
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dynamic-programming(G,w, s)

1: f 0[s] 0 and f
0[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
`�1 ! f

`

4: for each (u, v) 2 E do

5: if f
`�1[u] + w(u, v) < f

`[v] then
6: f

`[v] f
`�1[u] + w(u, v)

7: return (fn�1[v])v2V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n� 1 edges

Proof.
If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length.
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Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)

1: f old[s] 0 and f
old[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
old ! f

new

4: for each (u, v) 2 E do

5: if f
old[u] + w(u, v) < f

new[v] then
6: f

new[v] f
old[u] + w(u, v)

7: copy f
new ! f

old

8: return f
old

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
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Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v
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