"Evidence" for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in \mathrm{MST} \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin \mathrm{MST} \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

(1) Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm

(2) Single Source Shortest Paths

- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights
(4) All-Pair Shortest Paths and Floyd-Warshall

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U / D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$ $w: E \rightarrow \mathbb{R}_{\geq 0}$
Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest path from s to t

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$
Reason for Considering Single Source Shortest Paths
Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: $\pi[v], v \in V \backslash s$: the parent of v in shortest path tree $d[v], v \in V \backslash s$: the length of shortest path from s to v

Q: How to compute shortest paths from s when all edges have weight 1?

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS virtually
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!

Shortest Path Algorithm by Running BFS Virtually

1: $S \leftarrow\{s\}, d(s) \leftarrow 0$
2: while $|S| \leq n$ do
3: \quad find a $v \notin S$ that minimizes
$\min _{u \in S:(u, v) \in E}\{d[u]+w(u, v)\}$
4: $\quad S \leftarrow S \cup\{v\}$
5: $\quad d[v] \leftarrow \min _{u \in S:(u, v) \in E}\{d[u]+w(u, v)\}$

Virtual BFS: Example

Virtual BFS: Example

Time 0

Virtual BFS: Example

Virtual BFS: Example

Time 4

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Time 10

Outline

(1) Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm

(2) Single Source Shortest Paths

- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Dijkstra's Algorithm

Dijkstra(G, w, s)

1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
2: while $S \neq V$ do
3: $\quad u \leftarrow$ vertex in $V \backslash S$ with the minimum $d[u]$
4: \quad add u to S
5: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
6: \quad if $d[u]+w(u, v)<d[v]$ then
7:
$d[v] \leftarrow d[u]+w(u, v)$
8:
$\pi[v] \leftarrow u$
9: return (d, π)

Dijkstra's Algorithm

Dijkstra (G, w, s)

1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
2: while $S \neq V$ do
3: $\quad u \leftarrow$ vertex in $V \backslash S$ with the minimum $d[u]$
4: \quad add u to S
5: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
6: \quad if $d[u]+w(u, v)<d[v]$ then
7:
$d[v] \leftarrow d[u]+w(u, v)$
8: $\quad \pi[v] \leftarrow u$
9: return (d, π)

- Running time $=O\left(n^{2}\right)$

$58 / 88$

$58 / 88$

$58 / 88$

Improved Running Time using Priority Queue

Dijkstra (G, w, s)

1 :
2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V: Q . \operatorname{insert}(v, d[v])$
4: while $S \neq V$ do
5: $\quad u \leftarrow Q$.extract_min ()
6: $\quad S \leftarrow S \cup\{u\}$
7: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
8:
9 : if $d[u]+w(u, v)<d[v]$ then $d[v] \leftarrow d[u]+w(u, v), Q$. decrease_key $(v, d[v])$
10:

$$
\pi[v] \leftarrow u
$$

11: return (π, d)

Recall: Prim's Algorithm for MST

MST-Prim (G, w)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V: Q . \operatorname{insert}(v, d[v])$
4: while $S \neq V$ do
5: $\quad u \leftarrow Q$.extract_min()
6: $\quad S \leftarrow S \cup\{u\}$
7: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
8: \quad if $w(u, v)<d[v]$ then
9 :
$d[v] \leftarrow w(u, v), Q$. decrease_key $(v, d[v])$
$\pi[v] \leftarrow u$
11: $\operatorname{return}\{(u, \pi[u]) \mid u \in V \backslash\{s\}\}$

Improved Running Time

Running time:
$O(n) \times($ time for extract_min $)+O(m) \times$ (time for decrease_key $)$

Priority-Queue	extract_min	decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	$O(1)$	$O(n \log n+m)$

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Single Source Shortest Paths, Weights May be Negative
Input: directed graph $G=(V, E), s \in V$
assume all vertices are reachable from s
$w: E \rightarrow \mathbb{R}$
Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$ assume all vertices are reachable from s $w: E \rightarrow \mathbb{R}$
Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$ assume all vertices are reachable from s

$$
w: E \rightarrow \mathbb{R}
$$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$ assume all vertices are reachable from s

$$
w: E \rightarrow \mathbb{R}
$$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' \rightarrow 'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!

Dijkstra's Algorithm Fails if We Have Negative

 Weights

Dijkstra's Algorithm Fails if We Have Negative

 Weights

Dijkstra's Algorithm Fails if We Have Negative Weights

Dijkstra's Algorithm Fails if We Have Negative

 Weights

Q: What is the length of the shortest path from s to d ?

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

Q: What is the length of the shortest path from s to d ?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or

Q: What is the length of the shortest path from s to d ?
A: $-\infty$
Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"

Q: What is the length of the shortest simple path from s to d ?

Q: What is the length of the shortest simple path from s to d ?
A: 1

Q: What is the length of the shortest simple path from s to d ?
A: 1

- Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

algorithm	graph	weights	SS ?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U / D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative
Input: directed graph $G=(V, E), s \in V$
assume all vertices are reachable from s $w: E \rightarrow \mathbb{R}$
Output: shortest paths from s to all other vertices $v \in V$

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$
assume all vertices are reachable from s $w: E \rightarrow \mathbb{R}$
Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$
assume all vertices are reachable from s $w: E \rightarrow \mathbb{R}$
Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$'s

Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G=(V, E), s \in V$
assume all vertices are reachable from s

$$
w: E \rightarrow \mathbb{R}
$$

Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$'s
- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$$
\begin{aligned}
& \ell=0, v=s \\
& \ell=0, v \neq s \\
& \ell>0
\end{aligned}
$$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$$
\begin{aligned}
& \ell=0, v=s \\
& \ell=0, v \neq s \\
& \ell>0
\end{aligned}
$$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$$
\begin{aligned}
& \ell=0, v=s \\
& \ell=0, v \neq s \\
& \ell>0
\end{aligned}
$$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$$
\begin{aligned}
& \ell=0, v=s \\
& \ell=0, v \neq s \\
& \ell>0
\end{aligned}
$$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$$
\begin{aligned}
& \ell=0, v=s \\
& \ell=0, v \neq s
\end{aligned}
$$

$$
f^{\ell-1}[v]
$$

$$
\ell>0
$$

- $f^{\ell}[v], \ell \in\{0,1,2,3 \cdots, n-1\}, v \in V$: length of shortest path from s to v that uses at most ℓ edges
- $f^{2}[a]=6$
- $f^{3}[a]=2$

$\ell=0, v=s$
$\ell=0, v \neq s$
$\ell>0$

Dynamic Programming: Example

\downarrow length-0 edge

Dynamic Programming: Example

Dynamic Programming: Example

dynamic-programming (G, w, s)

1: $f^{0}[s] \leftarrow 0$ and $f^{0}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\ell-1} \rightarrow f^{\ell}$
4: for each $(u, v) \in E$ do
5:
if $f^{\ell-1}[u]+w(u, v)<f^{\ell}[v]$ then
6:

$$
f^{\ell}[v] \leftarrow f^{\ell-1}[u]+w(u, v)
$$

7: return $\left(f^{n-1}[v]\right)_{v \in V}$

dynamic-programming (G, w, s)

1: $f^{0}[s] \leftarrow 0$ and $f^{0}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: $\operatorname{for} \ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\ell-1} \rightarrow f^{\ell}$
4: \quad for each $(u, v) \in E$ do
5: if $f^{\ell-1}[u]+w(u, v)<f^{\ell}[v]$ then
6: $\quad f^{\ell}[v] \leftarrow f^{\ell-1}[u]+w(u, v)$
7: return $\left(f^{n-1}[v]\right)_{v \in V}$
Obs. Assuming there are no negative cycles, then a shortest path contains at most $n-1$ edges

dynamic-programming (G, w, s)

$$
\begin{aligned}
& \text { 1: } f^{0}[s] \leftarrow 0 \text { and } f^{0}[v] \leftarrow \infty \text { for any } v \in V \backslash\{s\} \\
& \text { 2: for } \ell \leftarrow 1 \text { to } n-1 \text { do } \\
& \text { 3: copy } f^{\ell-1} \rightarrow f^{\ell} \\
& \text { 4: } \quad \text { for each }(u, v) \in E \text { do } \\
& \text { 5: } \quad \text { if } f^{\ell-1}[u]+w(u, v)<f^{\ell}[v] \text { then } \\
& \text { 6: } \quad f^{\ell}[v] \leftarrow f^{\ell-1}[u]+w(u, v) \\
& \text { 7: return }\left(f^{n-1}[v]\right)_{v \in V}
\end{aligned}
$$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n-1$ edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length.

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)

1: $f^{\text {old }}[s] \leftarrow 0$ and $f^{\text {old }}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for each $(u, v) \in E$ do
5: \quad if $f^{\text {old }}[u]+w(u, v)<f^{\text {new }}[v]$ then
6: $\quad f^{\text {new }}[v] \leftarrow f^{\text {old }}[u]+w(u, v)$
7: \quad copy $f^{\text {new }} \rightarrow f^{\text {old }}$
8: return $f^{\text {old }}$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)

1: $f^{\text {old }}[s] \leftarrow 0$ and $f^{\text {old }}[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f^{\text {old }} \rightarrow f^{\text {new }}$
4: \quad for each $(u, v) \in E$ do
5: \quad if $f^{\text {old }}[u]+w(u, v)<f^{\text {new }}[v]$ then
6: $\quad f^{\text {new }}[v] \leftarrow f^{\text {old }}[u]+w(u, v)$
7: \quad copy $f^{\text {new }} \rightarrow f^{\text {old }}$
8: return $f^{\text {old }}$

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)
1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad copy $f \rightarrow f$
4: for each $(u, v) \in E$ do
5: \quad if $f[u]+w(u, v)<f[v]$ then
6:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

7: \quad copy $f \rightarrow f$

8: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Dynamic Programming with Better Space Usage

dynamic-programming (G, w, s)
1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5: $\quad f[v] \leftarrow f[u]+w(u, v)$
6: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: \quad for each $(u, v) \in E$ do
4: if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford Algorithm

Bellman-Ford (G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \backslash\{s\}$
2: for $\ell \leftarrow 1$ to $n-1$ do
3: for each $(u, v) \in E$ do
4: \quad if $f[u]+w(u, v)<f[v]$ then
5:

$$
f[v] \leftarrow f[u]+w(u, v)
$$

6: return f

- Issue: when we compute $f[u]+w(u, v), f[u]$ may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration $\ell, f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
- $f[v]$ is always the length of some path from s to v

