Assumption Assume all edge weights are different.

- $e \in MST \leftrightarrow$  there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$  there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

## Outline

#### Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

# Single Source Shortest Paths Dijkstra's Algorithm

#### 3 Shortest Paths in Graphs with Negative Weights

#### 4 All-Pair Shortest Paths and Floyd-Warshall

| algorithm      | graph | weights               | SS? | running time     |
|----------------|-------|-----------------------|-----|------------------|
| Simple DP      | DAG   | $\mathbb{R}$          | SS  | O(n+m)           |
| Dijkstra       | U/D   | $\mathbb{R}_{\geq 0}$ | SS  | $O(n\log n + m)$ |
| Bellman-Ford   | U/D   | $\mathbb{R}$          | SS  | O(nm)            |
| Floyd-Warshall | U/D   | $\mathbb{R}$          | AP  | $O(n^3)$         |

• DAG = directed acyclic graph U = undirected D = directed• SS = single source AP = all pairs

### s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E),  $s, t \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest path from s to t

### *s*-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E),  $s, t \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest path from s to t



### *s*-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E),  $s, t \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest path from s to t



## Single Source Shortest Paths Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: shortest paths from s to all other vertices $v \in V$

Input: (directed or undirected) graph G = (V, E),  $s \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest paths from s to all other vertices  $v \in V$ 

## Reason for Considering Single Source Shortest Paths Problem

• We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem

Input: (directed or undirected) graph G = (V, E),  $s \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest paths from s to all other vertices  $v \in V$ 

### Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: (directed or undirected) graph G = (V, E),  $s \in V$  $w : E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest paths from s to all other vertices  $v \in V$ 

### Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

**Input:** directed graph G = (V, E),  $s \in V$ 

 $w: E \to \mathbb{R}_{\geq 0}$ 

**Output:** shortest paths from s to all other vertices  $v \in V$ 

## Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

## Single Source Shortest Paths Input: directed graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: $\pi[v], v \in V \setminus s$ : the parent of v in shortest path tree $d[v], v \in V \setminus s$ : the length of shortest path from s to v











 $\bullet\,$  An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges



• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges



### Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every  $(u,v) \in E$
- 2: run BFS
- 3:  $\pi[v] \leftarrow$  vertex from which v is visited
- 4:  $d[v] \leftarrow \text{index of the level containing } v$

• An edge of weight  $w(\boldsymbol{u},\boldsymbol{v})$  is equivalent to a pah of  $w(\boldsymbol{u},\boldsymbol{v})$  unit-weight edges



## Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every  $(u,v) \in E$
- 2: run BFS
- 3:  $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4:  $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges



## Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every  $(u,v) \in E$
- 2: run BFS virtually

3: 
$$\pi[v] \leftarrow$$
 vertex from which  $v$  is visited

- 4:  $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

## Shortest Path Algorithm by Running BFS Virtually

1: 
$$S \leftarrow \{s\}, d(s) \leftarrow 0$$

2: while 
$$|S| \leq n$$
 do

3: find a 
$$v \notin S$$
 that minimizes  $\min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}$ 

$$4: \qquad S \leftarrow S \cup \{v\}$$

5: 
$$d[v] \leftarrow \min_{u \in S:(u,v) \in E} \{ d[u] + w(u,v) \}$$















## Outline

#### Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

# Single Source Shortest Paths Dijkstra's Algorithm

#### 3 Shortest Paths in Graphs with Negative Weights

#### 4 All-Pair Shortest Paths and Floyd-Warshall

## $\mathsf{Dijkstra}(G, w, s)$

- 1:  $S \leftarrow \emptyset, d(s) \leftarrow 0$  and  $d[v] \leftarrow \infty$  for every  $v \in V \setminus \{s\}$ 2: while  $S \neq V$  do
- 3:  $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]$
- 4: add u to S
- 5: for each  $v \in V \setminus S$  such that  $(u, v) \in E$  do

6: **if** 
$$d[u] + w(u, v) < d[v]$$
 **then**

7: 
$$d[v] \leftarrow d[u] + w(u, v)$$

8: 
$$\pi[v] \leftarrow u$$

9: return  $(d, \pi)$ 

## $\mathsf{Dijkstra}(G, w, s)$

- 1:  $S \leftarrow \emptyset, d(s) \leftarrow 0$  and  $d[v] \leftarrow \infty$  for every  $v \in V \setminus \{s\}$ 2: while  $S \neq V$  do
- 3:  $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]$
- 4: add u to S
- 5: for each  $v \in V \setminus S$  such that  $(u, v) \in E$  do

6: **if** 
$$d[u] + w(u, v) < d[v]$$
 **then**

7: 
$$d[v] \leftarrow d[u] + w(u, v)$$

8:  $\pi[v] \leftarrow u$ 

9: return  $(d, \pi)$ 

• Running time =  $O(n^2)$ 













































## Improved Running Time using Priority Queue

## $\mathsf{Dijkstra}(G, w, s)$

1: 2:  $S \leftarrow \emptyset, d(s) \leftarrow 0$  and  $d[v] \leftarrow \infty$  for every  $v \in V \setminus \{s\}$ 3:  $Q \leftarrow \text{empty queue, for each } v \in V$ : Q.insert(v, d[v])4: while  $S \neq V$  do  $u \leftarrow Q.\mathsf{extract\_min}()$ 5:  $S \leftarrow S \cup \{u\}$ 6: for each  $v \in V \setminus S$  such that  $(u, v) \in E$  do 7: if d[u] + w(u, v) < d[v] then 8:  $d[v] \leftarrow d[u] + w(u, v), Q.\mathsf{decrease\_key}(v, d[v])$ 9:  $\pi[v] \leftarrow u$ 10:

11: return  $(\pi, d)$ 

## Recall: Prim's Algorithm for MST

## $\mathsf{MST-Prim}(G, w)$

1:  $s \leftarrow \text{arbitrary vertex in } G$ 2:  $S \leftarrow \emptyset, d(s) \leftarrow 0$  and  $d[v] \leftarrow \infty$  for every  $v \in V \setminus \{s\}$ 3:  $Q \leftarrow \text{empty queue, for each } v \in V$ : Q.insert(v, d[v])4: while  $S \neq V$  do  $u \leftarrow Q.\mathsf{extract\_min}()$ 5:  $S \leftarrow S \cup \{u\}$ 6: for each  $v \in V \setminus S$  such that  $(u, v) \in E$  do 7: if w(u, v) < d[v] then 8:  $d[v] \leftarrow w(u, v), Q.\mathsf{decrease\_key}(v, d[v])$ 9:  $\pi[v] \leftarrow u$ 10: 11: return  $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$ 

#### Running time:

 $O(n) \times (\text{time for extract}_min) + O(m) \times (\text{time for decrease}_key)$ 

| Priority-Queue | extract_min | decrease_key | Time             |
|----------------|-------------|--------------|------------------|
| Неар           | $O(\log n)$ | $O(\log n)$  | $O(m \log n)$    |
| Fibonacci Heap | $O(\log n)$ | O(1)         | $O(n\log n + m)$ |

## Outline

### Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
- Single Source Shortest Paths
   Dijkstra's Algorithm

### Shortest Paths in Graphs with Negative Weights

### 4 All-Pair Shortest Paths and Floyd-Warshall

• In transition graphs, negative weights make sense

- In transition graphs, negative weights make sense
- If we sell a item: 'having the item' → 'not having the item', weight is negative (we gain money)

- In transition graphs, negative weights make sense
- If we sell a item: 'having the item'  $\rightarrow$  'not having the item', weight is negative (we gain money)
- Dijkstra's algorithm does not work any more!













### **Q:** What is the length of the shortest path from s to d?



**Q:** What is the length of the shortest path from s to d?

#### A: $-\infty$



















#### A: $-\infty$

**Def.** A negative cycle is a cycle in which the total weight of edges is negative.



### A: $-\infty$

**Def.** A negative cycle is a cycle in which the total weight of edges is negative.

# Dealing with Negative Cycles



### A: $-\infty$

**Def.** A negative cycle is a cycle in which the total weight of edges is negative.

# Dealing with Negative Cycles

• assume the input graph does not contain negative cycles, or



## A: $-\infty$

**Def.** A negative cycle is a cycle in which the total weight of edges is negative.

# Dealing with Negative Cycles

- assume the input graph does not contain negative cycles, or
- allow algorithm to report "negative cycle exists"







**A:** 1



## **A:** 1

• Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.

| algorithm      | graph | weights               | SS? | running time     |
|----------------|-------|-----------------------|-----|------------------|
| Simple DP      | DAG   | $\mathbb{R}$          | SS  | O(n+m)           |
| Dijkstra       | U/D   | $\mathbb{R}_{\geq 0}$ | SS  | $O(n\log n + m)$ |
| Bellman-Ford   | U/D   | $\mathbb{R}$          | SS  | O(nm)            |
| Floyd-Warshall | U/D   | $\mathbb{R}$          | AP  | $O(n^3)$         |

DAG = directed acyclic graph U = undirected D = directed
SS = single source AP = all pairs

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E),  $s \in V$ assume all vertices are reachable from s  $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices  $v \in V$ 

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E),  $s \in V$ assume all vertices are reachable from s  $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices  $v \in V$ 

• first try: f[v]: length of shortest path from s to v

Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E),  $s \in V$ assume all vertices are reachable from s  $w : E \to \mathbb{R}$ Output: shortest paths from s to all other vertices  $v \in V$ 

• first try: f[v]: length of shortest path from s to v

• issue: do not know in which order we compute f[v]'s

# Single Source Shortest Paths, Weights May be Negative Input: directed graph G = (V, E), $s \in V$ assume all vertices are reachable from s $w : E \to \mathbb{R}$

**Output:** shortest paths from s to all other vertices  $v \in V$ 

- first try: f[v]: length of shortest path from s to v
- issue: do not know in which order we compute f[v]'s
- $f^{\ell}[v], \ \ell \in \{0, 1, 2, 3 \cdots, n-1\}, \ v \in V$ : length of shortest path from s to v that uses at most  $\ell$  edges





• 
$$f^2[a] =$$



• 
$$f^2[a] = 6$$



• 
$$f^2[a] = 6$$

•  $f^3[a] =$ 



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

$$f^{\ell}[v] = \langle$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0 \\ \end{array}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0\\ \infty \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0\\ \infty\\ \min \begin{cases} 0\\ 0 \end{cases}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

 $f^{\ell-1}[v]$ 

$$f^{\ell}[v] = \begin{cases} 0\\ \infty\\ \min \begin{cases} \end{array}$$

$$\ell = 0, v = s$$
$$\ell = 0, v \neq s$$
$$\ell > 0$$

69/88



• 
$$f^2[a] = 6$$

• 
$$f^3[a] = 2$$

$$f^{\ell}[v] = \begin{cases} 0 & \ell = 0, v = s \\ \infty & \ell = 0, v \neq s \\ \min \left\{ \begin{array}{l} f^{\ell-1}[v] \\ \min_{u:(u,v)\in E} \left( f^{\ell-1}[u] + w(u,v) \right) & \ell > 0 \end{array} \right. \end{cases}$$























length-0 $\operatorname{edge}$ 





length-0 $\operatorname{edge}$ 





length-0 edge





length-0 $\operatorname{edge}$ 





length-0 $\operatorname{edge}$ 





length-0 edge





length-0 $\operatorname{edge}$ 











length-0 edge



length-0 edge









### dynamic-programming(G, w, s)

1: 
$$f^0[s] \leftarrow 0$$
 and  $f^0[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$   
2: for  $\ell \leftarrow 1$  to  $n - 1$  do  
3: copy  $f^{\ell - 1} \rightarrow f^{\ell}$   
4: for each  $(u, v) \in E$  do  
5: if  $f^{\ell - 1}[u] + w(u, v) < f^{\ell}[v]$  then  
6:  $f^{\ell}[v] \leftarrow f^{\ell - 1}[u] + w(u, v)$   
7: return  $(f^{n-1}[v])_{v \in V}$ 

### dynamic-programming(G, w, s)

1: 
$$f^0[s] \leftarrow 0$$
 and  $f^0[v] \leftarrow \infty$  for any  $v \in V \setminus \{s :$   
2: for  $\ell \leftarrow 1$  to  $n-1$  do  
3: copy  $f^{\ell-1} \rightarrow f^{\ell}$   
4: for each  $(u,v) \in E$  do  
5: if  $f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$  then  
6:  $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)$ 

7: return 
$$(f^{n-1}[v])_{v \in V}$$

**Obs.** Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

#### dynamic-programming(G, w, s)

1: 
$$f^0[s] \leftarrow 0$$
 and  $f^0[v] \leftarrow \infty$  for any  $v \in V \setminus \{s \\ 2:$  for  $\ell \leftarrow 1$  to  $n-1$  do  
3: copy  $f^{\ell-1} \rightarrow f^{\ell}$   
4: for each  $(u,v) \in E$  do  
5: if  $f^{\ell-1}[u] + w(u,v) < f^{\ell}[v]$  then  
6:  $f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)$ 

7: return 
$$(f^{n-1}[v])_{v \in V}$$

**Obs.** Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

#### Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length.  $\hfill\square$ 

dynamic-programming(G, w, s)

1: 
$$f^{\text{old}}[s] \leftarrow 0$$
 and  $f^{\text{old}}[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$   
2: for  $\ell \leftarrow 1$  to  $n - 1$  do  
3: copy  $f^{\text{old}} \rightarrow f^{\text{new}}$   
4: for each  $(u, v) \in E$  do  
5: if  $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$  then  
6:  $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$   
7: copy  $f^{\text{new}} \rightarrow f^{\text{old}}$   
8: return  $f^{\text{old}}$ 

•  $f^{\ell}$  only depends on  $f^{\ell-1}$ : only need 2 vectors

dynamic-programming(G, w, s)

1: 
$$f^{\text{old}}[s] \leftarrow 0$$
 and  $f^{\text{old}}[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

2: for 
$$\ell \leftarrow 1$$
 to  $n-1$  do

3: 
$$\operatorname{copy} f^{\operatorname{old}} \to f^{\operatorname{new}}$$

4: for each 
$$(u, v) \in E$$
 do

5: **if** 
$$f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$$
 **then**  
6:  $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$ 

6: 
$$f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$$

7: 
$$\operatorname{copy} f^{\operatorname{new}} \to f^{\operatorname{old}}$$

8: return  $f^{\text{old}}$ 

•  $f^{\ell}$  only depends on  $f^{\ell-1}$ : only need 2 vectors

only need 1 vector!

dynamic-programming(G, w, s)

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

2: for 
$$\ell \leftarrow 1$$
 to  $n-1$  do

3: 
$$\operatorname{copy} f \to f$$

4: for each 
$$(u, v) \in E$$
 do

5: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

6: 
$$f[v] \leftarrow f[u] + w(u, v)$$

7: 
$$\operatorname{copy} f \to f$$

8: return f

•  $f^{\ell}$  only depends on  $f^{\ell-1}$ : only need 2 vectors

• only need 1 vector!

dynamic-programming(G, w, s)

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

- $f^{\ell}$  only depends on  $f^{\ell-1}$ : only need 2 vectors
- only need 1 vector!

### $\mathsf{Bellman}\operatorname{\mathsf{-Ford}}(G,w,s)$

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

- $f^{\ell}$  only depends on  $f^{\ell-1}$ : only need 2 vectors
- only need 1 vector!

### $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

6: **return** *f* 

 $\bullet$  Issue: when we compute  $f[u]+w(u,v),\ f[u]$  may be changed since the end of last iteration

### $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

- $\bullet\,$  Issue: when we compute  $f[u]+w(u,v),\,f[u]$  may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

### $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

- $\bullet$  Issue: when we compute  $f[u]+w(u,v),\ f[u]$  may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration  $\ell$ , f[v] is at most the length of the shortest path from s to v that uses at most  $\ell$  edges

### $\mathsf{Bellman}\operatorname{\mathsf{-}Ford}(G,w,s)$

1: 
$$f[s] \leftarrow 0$$
 and  $f[v] \leftarrow \infty$  for any  $v \in V \setminus \{s\}$ 

- 2: for  $\ell \leftarrow 1$  to n-1 do
- 3: for each  $(u, v) \in E$  do

4: **if** 
$$f[u] + w(u, v) < f[v]$$
 **then**

5: 
$$f[v] \leftarrow f[u] + w(u, v)$$

- $\bullet$  Issue: when we compute  $f[u]+w(u,v),\ f[u]$  may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration  $\ell$ , f[v] is at most the length of the shortest path from s to v that uses at most  $\ell$  edges
- f[v] is always the length of some path from s to v