“Evidence” for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in$ MST \iff there is a cut in which e is the lightest edge
- $e \notin$ MST \iff there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
Outline

1 Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2 Single Source Shortest Paths
 - Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
<table>
<thead>
<tr>
<th>algorithm</th>
<th>graph</th>
<th>weights</th>
<th>SS?</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>R</td>
<td>SS</td>
<td>$O(n + m)$</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>$\mathbb{R}_{\geq 0}$</td>
<td>SS</td>
<td>$O(n \log n + m)$</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>R</td>
<td>SS</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>R</td>
<td>AP</td>
<td>$O(n^3)$</td>
</tr>
</tbody>
</table>

- DAG = directed acyclic graph
- U = undirected
- D = directed
- SS = single source
- AP = all pairs
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$w : E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest path from s to t
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest path from s to t
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$$w : E \rightarrow \mathbb{R}_{\geq 0}$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem.
Single Source Shortest Paths

Input: (directed or undirected) graph \(G = (V, E) \), \(s \in V \)
\[w : E \rightarrow \mathbb{R}_{\geq 0} \]

Output: shortest paths from \(s \) to all other vertices \(v \in V \)

Reason for Considering Single Source Shortest Paths

- We do not know how to solve \(s-t \) shortest path problem more efficiently than solving single source shortest path problem

- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: directed graph $G = (V, E), s \in V$

$$w : E \rightarrow \mathbb{R}_{\geq 0}$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output:
- $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree
- $d[v], v \in V \setminus s$: the length of shortest path from s to v
Q: How to compute shortest paths from s when all edges have weight 1?
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Assumption Weights $w(u, v)$ are integers (w.l.o.g.).
Assumption Weights $w(u, v)$ are integers (w.l.o.g.).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

```
1
u   1   1   1   1   v
```

```
4
u -> v
```
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1. replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2. run BFS
3. $\pi[v] \leftarrow$ vertex from which v is visited
4. $d[v] \leftarrow$ index of the level containing v
Assumption Weights $w(u, v)$ are integers (w.l.o.g.).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

![Graph](image)

Shortest Path Algorithm by Running BFS

1. replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2. run BFS
3. $\pi[v] \leftarrow$ vertex from which v is visited
4. $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

\[
\begin{array}{c}
\text{Shortest Path Algorithm by Running BFS} \\
1: \text{replace } (u, v) \text{ of length } w(u, v) \text{ with a path of } w(u, v) \\
\quad \text{unit-weight edges, for every } (u, v) \in E \\
2: \text{run BFS virtually} \\
3: \pi[v] \leftarrow \text{vertex from which } v \text{ is visited} \\
4: d[v] \leftarrow \text{index of the level containing } v
\end{array}
\]

- Problem: $w(u, v)$ may be too large!
Shortest Path Algorithm by Running BFS Virtually

1: $S \leftarrow \{s\}, \ d(s) \leftarrow 0$
2: while $|S| \leq n$ do
3: find a $v \notin S$ that minimizes $\min_{u \in S: (u,v) \in E} \{d[u] + w(u, v)\}$
4: $S \leftarrow S \cup \{v\}$
5: $d[v] \leftarrow \min_{u \in S: (u,v) \in E} \{d[u] + w(u, v)\}$
Virtual BFS: Example
Virtual BFS: Example

Time 0
Virtual BFS: Example

Time 2
Virtual BFS: Example

Time 4
Virtual BFS: Example

Time 7
Virtual BFS: Example

Time 9
Virtual BFS: Example

Time 10
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall
Dijkstra’s Algorithm

Dijkstra(*G, w, s*)

1. \(S \leftarrow \emptyset \), \(d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
2. while \(S \neq V \) do
3. \(u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u] \)
4. add \(u \) to \(S \)
5. for each \(v \in V \setminus S \) such that \((u, v) \in E\) do
6. \(\text{if } d[u] + w(u, v) < d[v] \text{ then} \)
7. \(d[v] \leftarrow d[u] + w(u, v) \)
8. \(\pi[v] \leftarrow u \)
9. return \((d, \pi)\)
Dijkstra’s Algorithm

Dijkstra\((G, w, s)\)

1: \(S \leftarrow \emptyset, d(s) \leftarrow 0\) and \(d[v] \leftarrow \infty\) for every \(v \in V \setminus \{s\}\)
2: \textbf{while} \(S \neq V\) \textbf{do}
3: \(u \leftarrow\) vertex in \(V \setminus S\) with the minimum \(d[u]\)
4: \(\text{add } u\) to \(S\)
5: \textbf{for} each \(v \in V \setminus S\) such that \((u, v) \in E\) \textbf{do}
6: \textbf{if} \(d[u] + w(u, v) < d[v]\) \textbf{then}
7: \(d[v] \leftarrow d[u] + w(u, v)\)
8: \(\pi[v] \leftarrow u\)
9: \textbf{return} \((d, \pi)\)

- Running time = \(O(n^2)\)
Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V$: $Q.insert(v, d[v])$
4: while $S \neq V$ do
5: \hspace{1em} $u \leftarrow Q.extract_min()$
6: \hspace{1em} $S \leftarrow S \cup \{u\}$
7: \hspace{1em} for each $v \in V \setminus S$ such that $(u, v) \in E$ do
8: \hspace{2em} if $d[u] + w(u, v) < d[v]$ then
9: \hspace{3em} $d[v] \leftarrow d[u] + w(u, v)$, $Q.decrease_key(v, d[v])$
10: \hspace{2em} $\pi[v] \leftarrow u$
11: return (π, d)
Recall: Prim’s Algorithm for MST

MST-Prim(G, w)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V$: Q.insert($v, d[v]$)
4: while $S \neq V$ do
5: \hspace{2em} $u \leftarrow Q$.extract_min()
6: \hspace{2em} $S \leftarrow S \cup \{u\}$
7: \hspace{2em} for each $v \in V \setminus S$ such that $(u, v) \in E$ do
8: \hspace{4em} if $w(u, v) < d[v]$ then
9: \hspace{6em} $d[v] \leftarrow w(u, v)$, Q.decrease_key($v, d[v]$)
10: \hspace{6em} $\pi[v] \leftarrow u$
11: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$
Improved Running Time

Running time:
\[O(n) \times \text{(time for extract_min)} + O(m) \times \text{(time for decrease_key)} \]

<table>
<thead>
<tr>
<th>Priority-Queue</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci Heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall
Single Source Shortest Paths, Weights May be Negative

Input: directed graph \(G = (V, E) \), \(s \in V \)

assume all vertices are reachable from \(s \)

\(w : E \rightarrow \mathbb{R} \)

Output: shortest paths from \(s \) to all other vertices \(v \in V \)
Single Source Shortest Paths, Weights May be Negative

Input: directed graph \(G = (V, E) \), \(s \in V \)
- assume all vertices are reachable from \(s \)
- \(w : E \rightarrow \mathbb{R} \)

Output: shortest paths from \(s \) to all other vertices \(v \in V \)

- In transition graphs, negative weights make sense
Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

Assume all vertices are reachable from s

$w : E \to \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- If we sell an item: ‘having the item’ \rightarrow ‘not having the item’, weight is negative (we gain money)
Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

- assume all vertices are reachable from s

 $w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- In transition graphs, negative weights make sense
- If we sell an item: ‘having the item’ \rightarrow ‘not having the item’, weight is negative (we gain money)
- Dijkstra’s algorithm does not work anymore!
Dijkstra’s Algorithm Fails if We Have Negative Weights
Q: What is the length of the shortest path from \(s \) to \(d \)?

A: 1

Definition: An edge \(e \) is a negative cycle if it has negative weight.

Dealing with Negative Cycles

Assume the input graph does not contain negative cycles, or allow the algorithm to report "negative cycle exists".
Q: What is the length of the shortest path from s to d?
Q: What is the length of the shortest path from \(s \) to \(d \)?

A: \(-\infty\)
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from \(s \) to \(d \)?

A: \(-\infty\)
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from s to d?

A: $-\infty$
Q: What is the length of the shortest path from \(s \) to \(d \)?

A: \(-\infty\)

Def. A negative cycle is a cycle in which the total weight of edges is negative.
Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles
Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles
- assume the input graph does not contain negative cycles, or
Q: What is the length of the shortest path from s to d?

A: $-\infty$

Def. A negative cycle is a cycle in which the total weight of edges is negative.

Dealing with Negative Cycles
- assume the input graph does not contain negative cycles, or
- allow algorithm to report “negative cycle exists”
Q: What is the length of the shortest simple path from s to d?

A: Unfortunately, computing the shortest simple path between two vertices is an NP-hard problem.
Q: What is the length of the shortest simple path from s to d?
Q: What is the length of the shortest simple path from s to d?

A: 1
Q: What is the length of the shortest simple path from s to d?

A: 1

Unfortunately, computing the shortest simple path between two vertices is an **NP-hard** problem.
<table>
<thead>
<tr>
<th>algorithm</th>
<th>graph</th>
<th>weights</th>
<th>SS?</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(n + m)$</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>$\mathbb{R}_{\geq 0}$</td>
<td>SS</td>
<td>$O(n \log n + m)$</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>AP</td>
<td>$O(n^3)$</td>
</tr>
</tbody>
</table>

- DAG = directed acyclic graph
- U = undirected
- D = directed
- SS = single source
- AP = all pairs
Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$
- assume all vertices are reachable from s
- $w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$
Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

assume all vertices are reachable from s

$w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

assume all vertices are reachable from s

$w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$’s
Defining Cells of Table

Single Source Shortest Paths, Weights May be Negative

Input: directed graph $G = (V, E)$, $s \in V$

- assume all vertices are reachable from s
- $w : E \rightarrow \mathbb{R}$

Output: shortest paths from s to all other vertices $v \in V$

- first try: $f[v]$: length of shortest path from s to v
- issue: do not know in which order we compute $f[v]$’s
- $f^\ell[v]$, $\ell \in \{0, 1, 2, 3 \ldots, n - 1\}$, $v \in V$: length of shortest path from s to v that uses at most ℓ edges
\(f^\ell[v], \ell \in \{0, 1, 2, 3 \ldots , n - 1\}, v \in V : \) length of shortest path from \(s \) to \(v \) that uses at most \(\ell \) edges
\[\ell \in \{0, 1, 2, 3 \ldots, n - 1\}, \quad v \in V : \]
length of shortest path from \(s \) to \(v \) that uses at most \(\ell \) edges

\[f^\ell[v] = \]

\[f^2[a] = \]
\[f^\ell[v], \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, v \in V: \]
length of shortest path from \(s \) to \(v \) that uses at most \(\ell \) edges

\[f^2[a] = 6 \]
\[f^\ell[v], \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, v \in V : \text{length of shortest path from } s \text{ to } v \text{ that uses at most } \ell \text{ edges} \]

- \[f^2[a] = 6 \]
- \[f^3[a] = \]
\[f^\ell[v], \; \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, \; v \in V : \text{length of shortest path from } s \text{ to } v \text{ that uses at most } \ell \text{ edges} \]

- \(f^2[a] = 6 \)
- \(f^3[a] = 2 \)
\[f^\ell[v], \ \ell \in \{0, 1, 2, 3 \cdots , n - 1\}, \ v \in V: \text{length of shortest path from } s \text{ to } v \text{ that uses at most } \ell \text{ edges} \]

- \(f^2[a] = 6 \)
- \(f^3[a] = 2 \)

\[
f^\ell[v] = \begin{cases}
\ell = 0, v = s \\
\ell = 0, v \neq s \\
\ell > 0
\end{cases}
\]
\[f^\ell[v], \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, v \in V : \]

length of shortest path from \(s \) to \(v \) that uses at most \(\ell \) edges

- \(f^2[a] = 6 \)
- \(f^3[a] = 2 \)

\[
\begin{align*}
 f^\ell[v] &= \begin{cases}
 0 & \ell = 0, v = s \\
 0 & \ell = 0, v \neq s \\
 \ell > 0 & \end{cases}
\end{align*}
\]
$f^\ell[v], \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, v \in V:$ length of shortest path from s to v that uses at most ℓ edges

- $f^2[a] = 6$
- $f^3[a] = 2$

\[
f^\ell[v] = \begin{cases}
0 & \ell = 0, v = s \\
\infty & \ell = 0, v \neq s \\
\ & \ell > 0
\end{cases}
\]
\[f^\ell[v], \quad \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, \quad v \in V : \] length of shortest path from \(s \) to \(v \) that uses at most \(\ell \) edges

- \(f^2[a] = 6 \)
- \(f^3[a] = 2 \)

\[
f^\ell[v] = \begin{cases}
0 & \text{if } \ell = 0, v = s \\
\infty & \text{if } \ell = 0, v \neq s \\
\min\{ & \text{if } \ell > 0
\end{cases}
\]
\[f^\ell[v], \ell \in \{0, 1, 2, 3 \cdots , n - 1\}, v \in V : \]
length of shortest path from \(s \) to \(v \) that uses
at most \(\ell \) edges

- \(f^2[a] = 6 \)
- \(f^3[a] = 2 \)

\[f^\ell[v] = \begin{cases}
0 & \text{if } \ell = 0, v = s \\
\infty & \text{if } \ell = 0, v \neq s \\
\min \{ f^{\ell-1}[v] \} & \ell > 0
\end{cases} \]
\[f^\ell[v], \; \ell \in \{0, 1, 2, 3 \cdots, n - 1\}, \; v \in V : \]
length of shortest path from \(s \) to \(v \) that uses
at most \(\ell \) edges
\[f^2[a] = 6 \]
\[f^3[a] = 2 \]

\[f^\ell[v] = \begin{cases}
0 & \ell = 0, \; v = s \\
\infty & \ell = 0, \; v \neq s \\
\min \left\{ \min_{u: (u,v) \in E} \left(f^{\ell-1}[u] + w(u, v) \right) \right\} & \ell > 0
\end{cases} \]
Dynamic Programming: Example

![Graph](image)

f^0

- **s**: 0
- **a**: ∞
- **b**: ∞
- **c**: ∞
- **d**: ∞

Vertex Labels

- **s**: 7
- **b**: 6
- **a**: 8
- **c**: -4
- **d**: -3

Length-0 Edge

- **c** to **d**: 7
Dynamic Programming: Example

\[f^0 \]

\[f^1 \]

\[
\begin{array}{c}
\text{s} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array}
\]

\[
\begin{array}{c}
7 \quad 6 \\
8 \quad -2 \\
-4 \quad -3 \\
7
\end{array}
\]

\[
\begin{array}{c}
\text{s} \\
\text{a} \\
\text{b} \\
\text{c} \\
\text{d}
\end{array}
\]

\[
\begin{array}{c}
0 \\
\infty \\
\infty \\
\infty \\
\infty
\end{array}
\]

\[
\begin{array}{c}
6 \quad 7 \\
8 \quad -4 \\
-3 \\
7
\end{array}
\]

length-0 edge
Dynamic Programming: Example

\[\text{length-0 edge} \]
Dynamic Programming: Example

\[
\begin{align*}
\text{length-0 edge} & \\
\end{align*}
\]
Dynamic Programming: Example

\[\begin{array}{c}
\begin{array}{c}
\text{b} \\
\rightarrow \text{s} \\
\downarrow 7 \\
\text{a} \\
\downarrow 6 \\
\text{c} \\
\rightarrow \text{d} \\
\downarrow -2 \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{s} \\
\rightarrow \text{a} \\
\downarrow 8 \\
\text{b} \\
\rightarrow \text{d} \\
\downarrow 7 \\
\text{c} \\
\rightarrow \text{d} \\
\downarrow -3 \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{f}^0 \\
\text{s} \\
\rightarrow \text{a} \\
\downarrow 6 \\
\text{b} \\
\rightarrow \text{c} \\
\downarrow 7 \\
\text{c} \\
\rightarrow \text{d} \\
\downarrow -2 \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{f}^1 \\
\text{s} \\
\rightarrow \text{a} \\
\downarrow 8 \\
\text{b} \\
\rightarrow \text{c} \\
\downarrow -3 \\
\text{c} \\
\rightarrow \text{d} \\
\downarrow 7 \\
\end{array}
\end{array} \]

length-0 edge
Dynamic Programming: Example

\[f^0 \]

\[f^1 \]

length-0 edge
Dynamic Programming: Example

\begin{align*}
& \text{length-0 edge} \\
& f^0: s \rightarrow a, \quad a \rightarrow b, \quad b \rightarrow c, \quad c \rightarrow d \\
& f^1: s \rightarrow a, \quad a \rightarrow b, \quad b \rightarrow c, \quad c \rightarrow d \\
& f^2: s \rightarrow a, \quad a \rightarrow b, \quad b \rightarrow c, \quad c \rightarrow d
\end{align*}
Dynamic Programming: Example

\begin{itemize}
\item f^0
\item f^1
\item f^2
\end{itemize}

Length-0 edge
Dynamic Programming: Example

- Diagram of a graph with nodes labeled s, a, b, c, and d, with edges labeled with weights.
- Calculation of functions f^0, f^1, f^2.
- Length-0 edge indicated.
Dynamic Programming: Example

\begin{itemize}
\item s to a (length: 7)
\item a to b (length: 6)
\item a to d (length: 8)
\item b to c (length: -2)
\item c to d (length: -3)
\item a to d (length: -4)
\item b to d (length: -3)
\item c to d (length: -2)
\item a to c (length: 6)
\item b to c (length: 7)
\item a to b (length: 8)
\end{itemize}

The length of the shortest path from s to d is 0.
Dynamic Programming: Example

![Diagram of a graph with labeled nodes and edges]
Dynamic Programming: Example

- Graph with edges labeled with weights:
 - s to a: 7
 - a to d: 6
 - b to c: 8
 - c to d: 7
 - b to a: -2
 - c to b: -3
 - d to c: -4

- Dynamic Programming stages:
 - Initial stage (f^0):
 - s: 0
 - a: ∞
 - b: ∞
 - c: ∞
 - d: ∞
 - Stage 1 (f^1):
 - s: 0
 - a: 6
 - b: 7
 - c: ∞
 - d: ∞
 - Stage 2 (f^2):
 - s: 0
 - a: 6
 - b: 7
 - c: 2
 - d: 4

- Transition graph with edges labeled with weights:
 - s to a: 6
 - a to b: 8
 - b to c: -4
 - c to d: -3
 - b to c: -3
 - c to d: -2

- Definition of length-0 edge:
 - An edge with weight 0
Dynamic Programming: Example

length-0 edge
Dynamic Programming: Example

\[f^0 \]
\[f^1 \]
\[f^2 \]
\[f^3 \]

length-0 edge
Dynamic Programming: Example

- Diagram showing a graph with nodes and edges labeled with values. The values are likely weights of the edges.
- The text likely explains the process of dynamic programming, using the graph as an example.
- The term "length-0 edge" suggests the consideration of base cases or initial conditions in the dynamic programming approach.
Dynamic Programming: Example

Diagram of a directed graph with vertices labeled as s, a, b, c, and d. The graph includes edges with weights 7, 6, 8, -3, -4, and -2. The diagram also shows four levels labeled f^0, f^1, f^2, and f^3, each representing a different stage of the dynamic programming algorithm.

The diagram illustrates the progression from the initial state f^0 to a final state, with each level showing the cumulative cost as the algorithm moves from one vertex to another. The length-0 edge is highlighted, indicating the starting point of the algorithm.
Dynamic Programming: Example

![Graph Diagram]

- f^0
- f^1
- f^2
- f^3

length-0 edge
Dynamic Programming: Example

![Graph](image)

- f^0: Initial state
- f^1: First iteration
- f^2: Second iteration
- f^3: Third iteration

Length-0 edge
Dynamic Programming: Example

```
\[ f^0 \]
\[ f^1 \]
\[ f^2 \]
\[ f^3 \]
\[ f^4 \]

length-0 edge
```
Dynamic Programming: Example

length-0 edge
dynamic-programming(G, w, s)

1: $f^0[s] \leftarrow 0$ and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\ell-1} \rightarrow f^\ell$
4: for each $(u, v) \in E$ do
5: if $f^{\ell-1}[u] + w(u, v) < f^\ell[v]$ then
6: $f^\ell[v] \leftarrow f^{\ell-1}[u] + w(u, v)$
7: return $(f^{n-1}[v])_{v \in V}$
dynamic-programming\((G, w, s)\)

1: \(f^0[s] \leftarrow 0\) and \(f^0[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: \textbf{for } \ell \leftarrow 1 \textbf{ to } n - 1 \textbf{ do}
3: \quad \text{copy } f^{\ell-1} \rightarrow f^\ell
4: \textbf{for each } (u, v) \in E \textbf{ do}
5: \quad \textbf{if } f^{\ell-1}[u] + w(u, v) < f^\ell[v] \textbf{ then}
6: \quad \quad f^\ell[v] \leftarrow f^{\ell-1}[u] + w(u, v)
7: \textbf{return } (f^{n-1}[v])_{v \in V}

\textbf{Obs.} Assuming there are no negative cycles, then a shortest path contains at most \(n - 1\) edges
dynamic-programming(G, w, s)

1. $f^0[s] \leftarrow 0$ and $f^0[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2. for $\ell \leftarrow 1$ to $n - 1$ do
3. copy $f^{\ell-1} \rightarrow f^\ell$
4. for each $(u, v) \in E$ do
5. if $f^{\ell-1}[u] + w(u, v) < f^\ell[v]$ then
6. $f^\ell[v] \leftarrow f^{\ell-1}[u] + w(u, v)$
7. return $(f^{n-1}[v])_{v \in V}$

Obs. Assuming there are no negative cycles, then a shortest path contains at most $n - 1$ edges

Proof.
If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. □
Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1: $f^{\text{old}}[s] \leftarrow 0$ and $f^{\text{old}}[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: copy $f^{\text{old}} \rightarrow f^{\text{new}}$
4: for each $(u, v) \in E$ do
5: if $f^{\text{old}}[u] + w(u, v) < f^{\text{new}}[v]$ then
6: $f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u, v)$
7: copy $f^{\text{new}} \rightarrow f^{\text{old}}$
8: return f^{old}

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
Dynamic Programming with Better Space Usage

dynamic-programming\((G, w, s)\)

1: \(f^{old}[s] \leftarrow 0\) and \(f^{old}[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: \textbf{for } \ell \leftarrow 1 \text{ to } n - 1 \text{ do}
3: \hspace{1em} \text{copy } f^{old} \rightarrow f^{new}
4: \hspace{1em} \textbf{for each} \ (u, v) \in E \ \textbf{do}
5: \hspace{2em} \textbf{if} \ f^{old}[u] + w(u, v) < f^{new}[v] \ \textbf{then}
6: \hspace{3em} f^{new}[v] \leftarrow f^{old}[u] + w(u, v)
7: \hspace{1em} \text{copy } f^{new} \rightarrow f^{old}
8: \hspace{1em} \textbf{return} \ f^{old}

- \(f^\ell\) only depends on \(f^{\ell-1}\): only need 2 vectors
- only need 1 vector!
Dynamic Programming with Better Space Usage

dynamic-programming\((G, w, s)\)

1: \(f[s] \leftarrow 0\) and \(f[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: \(\text{for } \ell \leftarrow 1\ \text{to}\ n - 1\ \text{do}\)
3: \(\text{copy } f \rightarrow f\)
4: \(\text{for each } (u, v) \in E\ \text{do}\)
5: \(\text{if } f[u] + w(u, v) < f[v] \text{ then}\)
6: \(f[v] \leftarrow f[u] + w(u, v)\)
7: \(\text{copy } f \rightarrow f\)
8: \(\text{return } f\)

- \(f^\ell\) only depends on \(f^{\ell-1}\): only need 2 vectors
- only need 1 vector!
Dynamic Programming with Better Space Usage

dynamic-programming(G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

- f^ℓ only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!
Bellman-Ford Algorithm

Bellman-Ford\((G, w, s)\)

1: \(f[s] \leftarrow 0\) and \(f[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2: for \(\ell \leftarrow 1\) to \(n - 1\) do
3: for each \((u, v) \in E\) do
4: if \(f[u] + w(u, v) < f[v]\) then
5: \(f[v] \leftarrow f[u] + w(u, v)\)
6: return \(f\)

- \(f^\ell\) only depends on \(f^{\ell-1}\): only need 2 vectors
- only need 1 vector!
Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1. $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2. **for** $\ell \leftarrow 1$ **to** $n - 1$ **do**
3. **for each** $(u, v) \in E$ **do**
4. **if** $f[u] + w(u, v) < f[v]$ **then**
5. \hspace{1em} $f[v] \leftarrow f[u] + w(u, v)$
6. **return** f

Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

- Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
- This is OK: it can only “accelerate” the process!
Bellman-Ford Algorithm

Bellman-Ford(G, w, s)

1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
2: for $\ell \leftarrow 1$ to $n - 1$ do
3: for each $(u, v) \in E$ do
4: if $f[u] + w(u, v) < f[v]$ then
5: $f[v] \leftarrow f[u] + w(u, v)$
6: return f

- Issue: when we compute $f[u] + w(u, v)$, $f[u]$ may be changed since the end of last iteration
- This is OK: it can only “accelerate” the process!
- After iteration ℓ, $f[v]$ is at most the length of the shortest path from s to v that uses at most ℓ edges
Bellman-Ford Algorithm

\[\text{Bellman-Ford}(G, w, s)\]

1. \(f[s] \leftarrow 0\) and \(f[v] \leftarrow \infty\) for any \(v \in V \setminus \{s\}\)
2. \textbf{for} \(\ell \leftarrow 1\) to \(n - 1\) \textbf{do}
3. \hspace{1em} \textbf{for} each \((u, v) \in E\) \textbf{do}
4. \hspace{2em} \textbf{if} \(f[u] + w(u, v) < f[v]\) \textbf{then}
5. \hspace{3em} \(f[v] \leftarrow f[u] + w(u, v)\)
6. \textbf{return} \(f\)

- **Issue:** when we compute \(f[u] + w(u, v)\), \(f[u]\) may be changed since the end of last iteration.
- **This is OK:** it can only “accelerate” the process!
- **After iteration \(\ell\),** \(f[v]\) is **at most** the length of the shortest path from \(s\) to \(v\) that uses at most \(\ell\) edges.
- **\(f[v]\)** is always the length of some path from \(s\) to \(v\).