Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

- To partition the array into two parts, we only need $O(1)$ extra space.

partition (A, ℓ, r)

1: $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2: $i \leftarrow \ell, j \leftarrow r$
3: while true do
4: \quad while $i<j$ and $A[i]<A[j]$ do $j \leftarrow j-1$
5: \quad if $i=j$ then break
6: \quad swap $A[i]$ and $A[j] ; i \leftarrow i+1$
7: \quad while $i<j$ and $A[i]<A[j]$ do $i \leftarrow i+1$
8: \quad if $i=j$ then break
9: $\quad \operatorname{swap} A[i]$ and $A[j] ; j \leftarrow j-1$
10: return i

In-Place Implementation of Quick-Sort

quicksort (A, ℓ, r)

1: if $\ell \geq r$ then return
2: $m \leftarrow \operatorname{patition}(A, \ell, r)$
3: quicksort $(A, \ell, m-1)$
4: quicksort $(A, m+1, r)$

- To sort an array A of size n, call quicksort $(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	8	12	20	32	48

5	7	9	25	29

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8	9	12	20	25	29

Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3	5	7	8	9	12	20	25	29	32	48

Outline

(1) Divide-and-Conquer

(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4 Polynomial Multiplication
(3) Solving Recurrences
6) Other Classic Algorithms using Divide-and-Conquer
(-) Computing n-th Fibonacci Number

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x ?

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x ?

A: $\left\lceil\log _{2} N\right\rceil$.

Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in\{1,2,3, \cdots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x ?

A: $\left\lceil\log _{2} N\right\rceil$.

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π.

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π.

Q: How many questions do you need to ask in order to get the permutation π ?

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π.

Q: How many questions do you need to ask in order to get the permutation π ?

A: $\log _{2} n!=\Theta(n \lg n)$

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3, \cdots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log _{2} n!=\Theta(n \lg n)$

Outline

(1) Divide-and-Conquer

(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Solving Recurrences
(3) Other Classic Algorithms using Divide-and-Conquer
(7) Computing n-th Fibonacci Number

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$
Output: the i-th smallest number in A

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$
Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.

Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$
Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time

Recall: Quicksort with Median Finder

quicksort (A, n)

1: if $n \leq 1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than $x \quad \triangleright$ Divide
4: $A_{R} \leftarrow$ elements in A that are greater than $x \quad \triangleright$ Divide
5: $B_{L} \leftarrow$ quicksort $\left(A_{L}, A_{L}\right.$.size $)$
6: $B_{R} \leftarrow$ quicksort $\left(A_{R}, A_{R}\right.$.size $)$
\triangleright Conquer
7: $t \leftarrow$ number of times x appear A
8: return the array obtained by concatenating B_{L}, the array containing t copies of x, and B_{R}

Selection Algorithm with Median Finder

selection (A, n, i)

1: if $n=1$ then return A

2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide
5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$.size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

Selection Algorithm with Median Finder

selection (A, n, i)

1: if $n=1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than x
\triangleright Divide
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide
5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

- Recurrence for selection: $T(n)=T(n / 2)+O(n)$

Selection Algorithm with Median Finder

selection (A, n, i)

1: if $n=1$ then return A
2: $x \leftarrow$ lower median of A
3: $A_{L} \leftarrow$ elements in A that are less than x
\triangleright Divide
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide
5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

- Recurrence for selection: $T(n)=T(n / 2)+O(n)$
- Solving recurrence: $T(n)=O(n)$

Randomized Selection Algorithm

selection (A, n, i)

1: if $n=1$ thenreturn A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide

5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size,$i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

Randomized Selection Algorithm

selection (A, n, i)

1: if $n=1$ thenreturn A
2: $x \leftarrow$ random element of A (called pivot)
3: $A_{L} \leftarrow$ elements in A that are less than x
4: $A_{R} \leftarrow$ elements in A that are greater than x
\triangleright Divide

5: if $i \leq A_{L}$.size then
6: return selection $\left(A_{L}, A_{L}\right.$. size,$\left.i\right)$
\triangleright Conquer
7: else if $i>n-A_{R}$.size then
8: \quad return selection $\left(A_{R}, A_{R}\right.$.size, $i-\left(n-A_{R}\right.$.size $\left.)\right) \quad \triangleright$ Conquer
9: else
10: return x

- expected running time $=O(n)$

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem

4. Polynomial Multiplication
(5) Solving Recurrences
6) Other Classic Algorithms using Divide-and-Conquer
(3) Computing n-th Fibonacci Number

Polynomial Multiplication

Input: two polynomials of degree $n-1$
Output: product of two polynomials

Polynomial Multiplication

Input: two polynomials of degree $n-1$
Output: product of two polynomials

Example:

$$
\left(3 x^{3}+2 x^{2}-5 x+4\right) \times\left(2 x^{3}-3 x^{2}+6 x-5\right)
$$

Polynomial Multiplication

Input: two polynomials of degree $n-1$
Output: product of two polynomials

Example:

$$
\begin{aligned}
& \left(3 x^{3}+2 x^{2}-5 x+4\right) \times\left(2 x^{3}-3 x^{2}+6 x-5\right) \\
= & 6 x^{6}-9 x^{5}+18 x^{4}-15 x^{3} \\
& +4 x^{5}-6 x^{4}+12 x^{3}-10 x^{2} \\
& -10 x^{4}+15 x^{3}-30 x^{2}+25 x \\
& +8 x^{3}-12 x^{2}+24 x-20 \\
= & 6 x^{6}-5 x^{5}+2 x^{4}+20 x^{3}-52 x^{2}+49 x-20
\end{aligned}
$$

Polynomial Multiplication

Input: two polynomials of degree $n-1$
Output: product of two polynomials

Example:

$$
\begin{aligned}
& \left(3 x^{3}+2 x^{2}-5 x+4\right) \times\left(2 x^{3}-3 x^{2}+6 x-5\right) \\
= & 6 x^{6}-9 x^{5}+18 x^{4}-15 x^{3} \\
& +4 x^{5}-6 x^{4}+12 x^{3}-10 x^{2} \\
& -10 x^{4}+15 x^{3}-30 x^{2}+25 x \\
& +8 x^{3}-12 x^{2}+24 x-20 \\
= & 6 x^{6}-5 x^{5}+2 x^{4}+20 x^{3}-52 x^{2}+49 x-20
\end{aligned}
$$

- Input: $(4,-5,2,3),(-5,6,-3,2)$
- Output: $(-20,49,-52,20,2,-5,6)$

Naïve Algorithm

polynomial-multiplication (A, B, n)

1: let $C[k] \leftarrow 0$ for every $k=0,1,2, \cdots, 2 n-2$
2: for $i \leftarrow 0$ to $n-1$ do
3: \quad for $j \leftarrow 0$ to $n-1$ do
4: $\quad C[i+j] \leftarrow C[i+j]+A[i] \times B[j]$
5: return C

Naïve Algorithm

polynomial-multiplication (A, B, n)

1: let $C[k] \leftarrow 0$ for every $k=0,1,2, \cdots, 2 n-2$
2: for $i \leftarrow 0$ to $n-1$ do
3: \quad for $j \leftarrow 0$ to $n-1$ do
4: $\quad C[i+j] \leftarrow C[i+j]+A[i] \times B[j]$
5: return C

Running time: $O\left(n^{2}\right)$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
& p(x)=3 x^{3}+2 x^{2}-5 x+4=(3 x+2) x^{2}+(-5 x+4) \\
& q(x)=2 x^{3}-3 x^{2}+6 x-5=(2 x-3) x^{2}+(6 x-5)
\end{aligned}
$$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
& p(x)=3 x^{3}+2 x^{2}-5 x+4=(3 x+2) x^{2}+(-5 x+4) \\
& q(x)=2 x^{3}-3 x^{2}+6 x-5=(2 x-3) x^{2}+(6 x-5)
\end{aligned}
$$

- $p(x)$: degree of $n-1$ (assume n is even)
- $p(x)=p_{H}(x) x^{n / 2}+p_{L}(x)$,
- $p_{H}(x), p_{L}(x)$: polynomials of degree $n / 2-1$.

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
& p(x)=3 x^{3}+2 x^{2}-5 x+4=(3 x+2) x^{2}+(-5 x+4) \\
& q(x)=2 x^{3}-3 x^{2}+6 x-5=(2 x-3) x^{2}+(6 x-5)
\end{aligned}
$$

- $p(x)$: degree of $n-1$ (assume n is even)
- $p(x)=p_{H}(x) x^{n / 2}+p_{L}(x)$,
- $p_{H}(x), p_{L}(x)$: polynomials of degree $n / 2-1$.

$$
p q=\left(p_{H} x^{n / 2}+p_{L}\right)\left(q_{H} x^{n / 2}+q_{L}\right)
$$

Divide-and-Conquer for Polynomial Multiplication

$$
\begin{aligned}
& p(x)=3 x^{3}+2 x^{2}-5 x+4=(3 x+2) x^{2}+(-5 x+4) \\
& q(x)=2 x^{3}-3 x^{2}+6 x-5=(2 x-3) x^{2}+(6 x-5)
\end{aligned}
$$

- $p(x)$: degree of $n-1$ (assume n is even)
- $p(x)=p_{H}(x) x^{n / 2}+p_{L}(x)$,
- $p_{H}(x), p_{L}(x)$: polynomials of degree $n / 2-1$.

$$
\begin{aligned}
p q & =\left(p_{H} x^{n / 2}+p_{L}\right)\left(q_{H} x^{n / 2}+q_{L}\right) \\
& =p_{H} q_{H} x^{n}+\left(p_{H} q_{L}+p_{L} q_{H}\right) x^{n / 2}+p_{L} q_{L}
\end{aligned}
$$

