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Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.
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partition(A, `, r)
1: p random integer between ` and r, swap A[p] and A[`]
2: i `, j  r

3: while true do

4: while i < j and A[i] < A[j] do j  j � 1
5: if i = j then break

6: swap A[i] and A[j]; i i+ 1
7: while i < j and A[i] < A[j] do i i+ 1

8: if i = j then break

9: swap A[i] and A[j]; j  j � 1

10: return i
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In-Place Implementation of Quick-Sort

quicksort(A, `, r)
1: if ` � r then return

2: m patition(A, `, r)
3: quicksort(A, `,m� 1)
4: quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
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Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays
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Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
To sort, we are only allowed to compare two elements

We can not use “internal structures” of the elements
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Lemma The (worst-case) running time of any comparison-based
sorting algorithm is ⌦(n lg n).

Bob has one number x in his hand, x 2 {1, 2, 3, · · · , N}.
You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: dlog2 Ne.
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x = 1?

x  2?

x = 3?

1 2 3 4
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Comparison-Based Sorting Algorithms

Q: Can we do better than O(n log n) for sorting?

A: No, for comparison-based sorting algorithms.

Bob has a permutation ⇡ over {1, 2, 3, · · · , n} in his hand.

You can ask Bob “yes/no” questions about ⇡.

Q: How many questions do you need to ask in order to get the
permutation ⇡?

A: log2 n! = ⇥(n lg n)
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You can ask Bob questions of the form “does i appear before j in
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Selection Problem
Input: a set A of n numbers, and 1  i  n

Output: the i-th smallest number in A

Sorting solves the problem in time O(n lg n).

Our goal: O(n) running time
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Recall: Quicksort with Median Finder

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: BL  quicksort(AL, AL.size) . Conquer
6: BR  quicksort(AR, AR.size) . Conquer
7: t number of times x appear A
8: return the array obtained by concatenating BL, the array

containing t copies of x, and BR
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Selection Algorithm with Median Finder

selection(A, n, i)
1: if n = 1 then return A

2: x lower median of A
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: if i  AL.size then

6: return selection(AL, AL.size, i) . Conquer
7: else if i > n� AR.size then

8: return selection(AR, AR.size, i� (n� AR.size)) . Conquer
9: else

10: return x

Recurrence for selection: T (n) = T (n/2) +O(n)

Solving recurrence: T (n) = O(n)
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Randomized Selection Algorithm

selection(A, n, i)
1: if n = 1 thenreturn A

2: x random element of A (called pivot)
3: AL  elements in A that are less than x . Divide
4: AR  elements in A that are greater than x . Divide
5: if i  AL.size then

6: return selection(AL, AL.size, i) . Conquer
7: else if i > n� AR.size then

8: return selection(AR, AR.size, i� (n� AR.size)) . Conquer
9: else

10: return x

expected running time = O(n)
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Polynomial Multiplication
Input: two polynomials of degree n� 1

Output: product of two polynomials

Example:

(3x3 + 2x2 � 5x+ 4)⇥ (2x3 � 3x2 + 6x� 5)

= 6x6 � 9x5 + 18x4 � 15x3

+ 4x5 � 6x4 + 12x3 � 10x2

� 10x4 + 15x3 � 30x2 + 25x

+ 8x3 � 12x2 + 24x� 20

= 6x6 � 5x5 + 2x4 + 20x3 � 52x2 + 49x� 20

Input: (4,�5, 2, 3), (�5, 6,�3, 2)
Output: (�20, 49,�52, 20, 2,�5, 6)



43/75

Polynomial Multiplication
Input: two polynomials of degree n� 1

Output: product of two polynomials

Example:

(3x3 + 2x2 � 5x+ 4)⇥ (2x3 � 3x2 + 6x� 5)

= 6x6 � 9x5 + 18x4 � 15x3

+ 4x5 � 6x4 + 12x3 � 10x2

� 10x4 + 15x3 � 30x2 + 25x

+ 8x3 � 12x2 + 24x� 20

= 6x6 � 5x5 + 2x4 + 20x3 � 52x2 + 49x� 20

Input: (4,�5, 2, 3), (�5, 6,�3, 2)
Output: (�20, 49,�52, 20, 2,�5, 6)



43/75

Polynomial Multiplication
Input: two polynomials of degree n� 1

Output: product of two polynomials

Example:

(3x3 + 2x2 � 5x+ 4)⇥ (2x3 � 3x2 + 6x� 5)

= 6x6 � 9x5 + 18x4 � 15x3

+ 4x5 � 6x4 + 12x3 � 10x2

� 10x4 + 15x3 � 30x2 + 25x

+ 8x3 � 12x2 + 24x� 20

= 6x6 � 5x5 + 2x4 + 20x3 � 52x2 + 49x� 20

Input: (4,�5, 2, 3), (�5, 6,�3, 2)
Output: (�20, 49,�52, 20, 2,�5, 6)



43/75

Polynomial Multiplication
Input: two polynomials of degree n� 1

Output: product of two polynomials

Example:

(3x3 + 2x2 � 5x+ 4)⇥ (2x3 � 3x2 + 6x� 5)

= 6x6 � 9x5 + 18x4 � 15x3

+ 4x5 � 6x4 + 12x3 � 10x2

� 10x4 + 15x3 � 30x2 + 25x

+ 8x3 � 12x2 + 24x� 20

= 6x6 � 5x5 + 2x4 + 20x3 � 52x2 + 49x� 20

Input: (4,�5, 2, 3), (�5, 6,�3, 2)
Output: (�20, 49,�52, 20, 2,�5, 6)



44/75

Näıve Algorithm

polynomial-multiplication(A,B, n)
1: let C[k] 0 for every k = 0, 1, 2, · · · , 2n� 2
2: for i 0 to n� 1 do

3: for j  0 to n� 1 do

4: C[i+ j] C[i+ j] + A[i]⇥ B[j]

5: return C

Running time: O(n2)
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Divide-and-Conquer for Polynomial Multiplication

p(x) = 3x3 + 2x2 � 5x+ 4 = (3x+ 2)x2 + (�5x+ 4)

q(x) = 2x3 � 3x2 + 6x� 5 = (2x� 3)x2 + (6x� 5)

p(x): degree of n� 1 (assume n is even)

p(x) = pH(x)xn/2 + pL(x),

pH(x), pL(x): polynomials of degree n/2� 1.

pq =
�
pHx

n/2 + pL

��
qHx

n/2 + qL

�

= pHqHx
n +

�
pHqL + pLqH

�
x
n/2 + pLqL
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