Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L$, $v \in R$ or $v \in L$, $u \in R$.
Testing Bipartiteness

Taking an arbitrary vertex $s \in V$
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)

If \(G \) contains multiple connected components, repeat above algorithm for each component
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- \ldots
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...$
- Report “not a bipartite graph” if contradiction was found
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\cdots \)
- Report “not a bipartite graph” if contradiction was found
- If \(G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
BFS(s)

1: \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \(s \) as “visited” and all other vertices as “unvisited”
3: \(\text{while} \ \text{head} \leq \text{tail} \ \text{do} \)
4: \(v \leftarrow \text{queue}[\text{head}], \text{head} \leftarrow \text{head} + 1 \)
5: \(\text{for all neighbors} \ u \ \text{of} \ v \ \text{do} \)
6: \(\text{if} \ u \ \text{is “unvisited” then} \)
7: \(\text{tail} \leftarrow \text{tail} + 1, \text{queue}[\text{tail}] = u \)
8: \(\text{mark} \ u \ \text{as “visited”} \)
Testing Bipartiteness using BFS

test-bipartiteness(s)

1. $head \leftarrow 1$, $tail \leftarrow 1$, $queue[1] \leftarrow s$
2. mark s as “visited” and all other vertices as “unvisited”
3. $color[s] \leftarrow 0$
4. while $head \leq tail$ do
5. \hspace{1em} $v \leftarrow queue[head]$, $head \leftarrow head + 1$
6. \hspace{1em} for all neighbors u of v do
7. \hspace{2em} if u is “unvisited” then
8. \hspace{3em} $tail \leftarrow tail + 1$, $queue[tail] = u$
9. \hspace{3em} mark u as “visited”
10. \hspace{2em} $color[u] \leftarrow 1 - color[v]$
11. \hspace{1em} else if $color[u] = color[v]$ then
12. \hspace{1.5em} print(“G is not bipartite”) and exit
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: \hspace{1em} if v is “unvisited” then
4: \hspace{2em} test-bipartiteness(v)
5: print(“G is bipartite”)
Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex \(v \in V \) do
3: if \(v \) is “unvisited” then
4: test-bipartiteness(\(v \))
5: print(“\(G \) is bipartite”)

Obs. Running time of algorithm = \(O(n + m) \)
Testing Bipartiteness using DFS

test-bipartiteness-DFS(\(s\))

1. mark all vertices as “unvisited”
2. recursive-test-DFS(\(s\))

recursive-test-DFS(\(v\))

1. mark \(v\) as “visited”
2. for all neighbors \(u\) of \(v\) do
3. if \(u\) is unvisited then, recursive-test-DFS(\(u\))
Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)
1: mark all vertices as “unvisited”
2: color[s] ← 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then
4: color[u] ← 1 − color[v], recursive-test-DFS(u)
5: else if color[u] = color[v] then
6: print(“G is not bipartite”) and exit
Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex \(v \in V \) do
3: if \(v \) is “unvisited” then
4: test-bipartiteness-DFS(\(v \))
5: print(“\(G \) is bipartite”)
Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex $v \in V$ do
3: if v is “unvisited” then
4: test-bipartiteness-DFS(v)
5: print(“G is bipartite”)

Obs. Running time of algorithm = $O(n + m)$
Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.
Bipartite Graph

Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.
Def. An undirected graph $G = (V, E)$ is a **bipartite graph** if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also a bipartite graph.
Obs. BFS and DFS naturally induce a tree.
Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.
BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree $=$ DFS tree.

Obs. If BFS tree $=$DFS tree, then G is a tree.
1. Graphs

2. Connectivity and Graph Traversal
 - Types of Graphs

3. Bipartite Graphs
 - Testing Bipartiteness

4. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \to \{1, 2, 3 \cdots, n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \to \{1, 2, 3 \cdots, n\}$, so that
- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

![Diagram](attachment:image.png)
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- **Algorithm**: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- **Algorithm**: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

![Graph diagram](image-url)
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1: let $d_v \leftarrow 0$ for every $v \in V$
2: for every $v \in V$ do
3: for every u such that $(v, u) \in E$ do
4: $d_u \leftarrow d_u + 1$
5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
6: while $S \neq \emptyset$ do
7: $v \leftarrow$ arbitrary vertex in S, $S \leftarrow S \setminus \{v\}$
8: $i \leftarrow i + 1$, $\pi(v) \leftarrow i$
9: for every u such that $(v, u) \in E$ do
10: $d_u \leftarrow d_u - 1$
11: if $d_u = 0$ then add u to S
12: if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time $= O(n + m)$