Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)



Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;
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Implementing BFS using a Queue

BFS(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do
4: v < queue[head], head < head + 1
for all neighbors u of v do
if u is “unvisited” then
tail < tail + 1, queue[tail] = u
mark u as “visited”

o NoO

@ Running time: O(n + m).
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Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex ( “dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back
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Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then recursive-DFS(u)




© Connectivity and Graph Traversal
@ Types of Graphs



Path Graph (or Linear Graph)

Def. An undirected graph

G = (V, E) is a path if the
vertices can be listed in an order
{v1,v9, ...,v,} such that the edges
are the {v;, v;11} where
i1=1,2,...,n—1.

@ Path graphs are connected graphs.
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Cycle Graph (or Circular Graph)

Def. An undirected graph

G = (V, E) is a cycle if its vertices
can be listed in an order

V1, U, ..., U, such that the edges
are the {v;, v; 11} where
1=1,2,...,n — 1, plus the edge

{vn,v1}.

@ The degree of all vertices is 2.



Def. An undirected graph

G = (V,E) is a tree if any two
vertices are connected by exactly
one path. Or the graph is a
connected acyclic graph.

@ Most important type of special graphs: most computational
problems are easier to solve on trees or lines.



Complete Graph

Def. An undirected graph

G = (V, E) is a complete graph if
each pair of vertices is joined by
an edge.

@ A complete graph contains all possible edges.



Planar Graph

Def. An undirected graph

G = (V, E) is a planar graph if its
vertices and edges can be drawn in
a plane such that no two of the
edges intersect.

@ Most computational problems have good solutions in a planar
graph.



Directed Acyclic Graph (DAG)

Def. A directed graph

G = (V, E) is a directed acyclic
graph if it is a directed graph with
no directed cycles

@ DAG is equivalent to a partial ordering of nodes.



Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.
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Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, either u € L,v € R or
veELu€R.
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Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component
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Test Bipartiteness

bad edges!



Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbors u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as ‘“visited”




Testing Bipartiteness using BFS

test-bipartiteness(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited”
3: color[s] < 0
4: while head < tail do
5: v < queue[head], head < head + 1
6: for all neighbors u of v do
7: if w is "“unvisited” then
8: tail < tail + 1, queue[tail] = u
9: mark u as “visited”
10: color|u] <— 1 — color[v]
11: else if color[u] = color|v] then
12: print( “G is not bipartite”) and exit )




