Connectivity Problem
Input: graph G = (V, E), (using linked lists)
two vertices s,t € V

Output: whether there is a path connecting s to t in G

@ Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains ¢

o Breadth-First Search (BFS)
o Depth-First Search (DFS)

Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Breadth-First Search (BFS)

@ Build Iayers Lo, L17 LQ, Lg, v

o Lo={s}
@ L;,q contains all nodes that are not in Lo U L; U---UL; and
have an edge to a vertex in L;

Implementing BFS using a Queue

BFS(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do
4: v < queue[head], head < head + 1
for all neighbors u of v do
if u is “unvisited” then
tail < tail + 1, queue[tail] = u
mark u as “visited”

o NoO

@ Running time: O(n + m).

Example of BFS via Queue

tail

e @ head

Example of BFS via Queue

tail

(U (1)
S T

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

Example of BFS via Queue

tail

HEEREIE

head

Example of BFS via Queue

tail

HEEREIEE

head

Example of BFS via Queue

tail

Vawd|

HE R

head

Example of BFS via Queue

tail

HE R

head

Example of BFS via Queue

tail

HEEEEIIE

head

Example of BFS via Queue

tail
v

ey

HEEEEIEE

head

Example of BFS via Queue

tail

S

HE R EIEE

head

Example of BFS via Queue

tail

HEEEEIEE

head

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

Starting from s
Travel through the first edge leading out of the current vertex
When reach an already-visited vertex (“dead-end"), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)

1: mark v as “visited”
2: for all neighbors u of v do
3: if u is unvisited then recursive-DFS(u)

© Connectivity and Graph Traversal
@ Types of Graphs

Path Graph (or Linear Graph)

Def. An undirected graph

G = (V, E) is a path if the
vertices can be listed in an order
{v1,v9, ...,v,} such that the edges
are the {v;, v;11} where
i1=1,2,...,n—1.

@ Path graphs are connected graphs.

SR WS

Cycle Graph (or Circular Graph)

Def. An undirected graph

G = (V, E) is a cycle if its vertices
can be listed in an order

V1, U, ..., U, such that the edges
are the {v;, v; 11} where
1=1,2,...,n — 1, plus the edge

{vn,v1}.

@ The degree of all vertices is 2.

Def. An undirected graph

G = (V,E) is a tree if any two
vertices are connected by exactly
one path. Or the graph is a
connected acyclic graph.

@ Most important type of special graphs: most computational
problems are easier to solve on trees or lines.

Complete Graph

Def. An undirected graph

G = (V, E) is a complete graph if
each pair of vertices is joined by
an edge.

@ A complete graph contains all possible edges.

Planar Graph

Def. An undirected graph

G = (V, E) is a planar graph if its
vertices and edges can be drawn in
a plane such that no two of the
edges intersect.

@ Most computational problems have good solutions in a planar
graph.

Directed Acyclic Graph (DAG)

Def. A directed graph

G = (V, E) is a directed acyclic
graph if it is a directed graph with
no directed cycles

@ DAG is equivalent to a partial ordering of nodes.

Bipartite Graph

Def. An undirected graph G = (V, E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u,v) € E, either

ue L,ve Rorve L ucER.

e Bipartite Graphs
@ Testing Bipartiteness

e Bipartite Graphs
@ Testing Bipartiteness

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V' into two
sets L and R such that for every edge
(u,v) € E, either u € L,v € R or
veELu€R.

Testing Bipartiteness

e Taking an arbitrary vertex s € V

Testing Bipartiteness

o Taking an arbitrary vertex s € V

@ Assuming s € L w.l.o.g

Testing Bipartiteness

o Taking an arbitrary vertex s € V
@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

Testing Bipartiteness

o Taking an arbitrary vertex s € V

@ Assuming s € L w.l.o.g

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

°
°

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L
°

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

°
°

@ Neighbors of s must be in R

@ Neighbors of neighbors of s must be in L
°
°

Report “not a bipartite graph” if contradiction was found

Testing Bipartiteness

Taking an arbitrary vertex s € V
Assuming s € L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

bad edges!

Testing Bipartiteness using BFS

BFS(s)

1. head < 1,tail < 1, queue[l] < s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head < tail do

4: v < queue[head], head < head + 1

5 for all neighbors u of v do

6 if u is “unvisited” then

7: tail < tail + 1, queue[tail] = u

8: mark u as ‘“visited”

Testing Bipartiteness using BFS

test-bipartiteness(s)
1. head < 1,tail < 1, queue[l] < s
2: mark s as “visited”
3: color[s] < 0
4: while head < tail do
5: v < queue[head], head < head + 1
6: for all neighbors u of v do
7: if w is "“unvisited” then
8: tail < tail + 1, queue[tail] = u
9: mark u as “visited”
10: color|u] <— 1 — color[v]
11: else if color[u] = color|v] then
12: print(“G is not bipartite”) and exit)

