
11/38

Connectivity Problem
Input: graph G = (V,E), (using linked lists)

two vertices s, t 2 V

Output: whether there is a path connecting s to t in G

Algorithm: starting from s, search for all vertices that are
reachable from s and check if the set contains t
Breadth-First Search (BFS)
Depth-First Search (DFS)

12/38

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

12/38

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

12/38

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

12/38

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

12/38

Breadth-First Search (BFS)

Build layers L0, L1, L2, L3, · · ·
L0 = {s}
Lj+1 contains all nodes that are not in L0 [L1 [· · · [Lj and
have an edge to a vertex in Lj

1

2 3

4 5

7

8

6

13/38

Implementing BFS using a Queue

BFS(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head  tail do

4: v queue[head], head head+ 1
5: for all neighbors u of v do

6: if u is “unvisited” then

7: tail tail + 1, queue[tail] = u

8: mark u as “visited”

Running time: O(n+m).

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

1

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

1

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

21

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 31

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 31

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 41

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v 2 3 4 51

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 51

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 71

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v
2 3 4 5 7 81

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 81

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 81

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head
v

2 3 4 5 7 8 61

14/38

Example of BFS via Queue

1

2 3

4 5

7

8

6

tail

head

v

2 3 4 5 7 8 61

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

15/38

Depth-First Search (DFS)

Starting from s

Travel through the first edge leading out of the current vertex

When reach an already-visited vertex (“dead-end”), go back

Travel through the next edge

If tried all edges leading out of the current vertex, go back

1

2 3

4 5

7

8

6

16/38

Implementing DFS using Recurrsion

DFS(s)
1: mark all vertices as “unvisited”
2: recursive-DFS(s)

recursive-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then recursive-DFS(u)

17/38

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering

18/38

Path Graph (or Linear Graph)

Def. An undirected graph
G = (V,E) is a path if the
vertices can be listed in an order
{v1, v2, ..., vn} such that the edges
are the {vi, vi+1} where
i = 1, 2, ..., n� 1.

Path graphs are connected graphs.

19/38

Cycle Graph (or Circular Graph)

Def. An undirected graph
G = (V,E) is a cycle if its vertices
can be listed in an order
v1, v2, ..., vn such that the edges
are the {vi, vi+1} where
i = 1, 2, ..., n� 1, plus the edge
{vn, v1}.

The degree of all vertices is 2.

20/38

Tree

Def. An undirected graph
G = (V,E) is a tree if any two
vertices are connected by exactly
one path. Or the graph is a
connected acyclic graph.

Most important type of special graphs: most computational
problems are easier to solve on trees or lines.

21/38

Complete Graph

Def. An undirected graph
G = (V,E) is a complete graph if
each pair of vertices is joined by
an edge.

A complete graph contains all possible edges.

22/38

Planar Graph

Def. An undirected graph
G = (V,E) is a planar graph if its
vertices and edges can be drawn in
a plane such that no two of the
edges intersect.

Most computational problems have good solutions in a planar
graph.

23/38

Directed Acyclic Graph (DAG)

Def. A directed graph
G = (V,E) is a directed acyclic
graph if it is a directed graph with
no directed cycles

DAG is equivalent to a partial ordering of nodes.

24/38

Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

25/38

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering

26/38

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering

27/38

Testing Bipartiteness: Applications of BFS

Def. A graph G = (V,E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) 2 E, either u 2 L, v 2 R or
v 2 L, u 2 R.

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

28/38

Testing Bipartiteness

Taking an arbitrary vertex s 2 V

Assuming s 2 L w.l.o.g

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

· · ·
Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above
algorithm for each component

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

29/38

Test Bipartiteness

bad edges!

30/38

Testing Bipartiteness using BFS

BFS(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head  tail do

4: v queue[head], head head+ 1
5: for all neighbors u of v do

6: if u is “unvisited” then

7: tail tail + 1, queue[tail] = u

8: mark u as “visited”

30/38

Testing Bipartiteness using BFS

test-bipartiteness(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: color[s] 0
4: while head  tail do

5: v queue[head], head head+ 1
6: for all neighbors u of v do

7: if u is “unvisited” then

8: tail tail + 1, queue[tail] = u

9: mark u as “visited”
10: color[u] 1� color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit

