Connectivity Problem

Input: graph $G=(V, E)$, (using linked lists) two vertices $s, t \in V$
Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Breadth-First Search (BFS)

- Build layers $L_{0}, L_{1}, L_{2}, L_{3}, \cdots$
- $L_{0}=\{s\}$
- L_{j+1} contains all nodes that are not in $L_{0} \cup L_{1} \cup \cdots \cup L_{j}$ and have an edge to a vertex in L_{j}

Implementing BFS using a Queue

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: for all neighbors u of v do
6: if u is "unvisited" then
7:
8:
tail \leftarrow tail +1, queue $[$ tail $]=u$
mark u as "visited"

- Running time: $O(n+m)$.

Example of BFS via Queue

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS (s)

1: mark all vertices as "unvisited"
2: recursive-DFS(s)

recursive-DFS (v)

1: mark v as "visited"
2: for all neighbors u of v do
3: \quad if u is unvisited then recursive-DFS (u)

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs

(3) Bipartite Graphs

- Testing Bipartiteness

4 Topological Ordering

Path Graph (or Linear Graph)

Def. An undirected graph $G=(V, E)$ is a path if the vertices can be listed in an order $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that the edges
 are the $\left\{v_{i}, v_{i+1}\right\}$ where $i=1,2, \ldots, n-1$.

- Path graphs are connected graphs.

Cycle Graph (or Circular Graph)

Def. An undirected graph $G=(V, E)$ is a cycle if its vertices can be listed in an order $v_{1}, v_{2}, \ldots, v_{n}$ such that the edges are the $\left\{v_{i}, v_{i+1}\right\}$ where $i=1,2, \ldots, n-1$, plus the edge $\left\{v_{n}, v_{1}\right\}$.

- The degree of all vertices is 2 .

Tree

Def. An undirected graph $G=(V, E)$ is a tree if any two vertices are connected by exactly one path. Or the graph is a connected acyclic graph.

- Most important type of special graphs: most computational problems are easier to solve on trees or lines.

Complete Graph

Def. An undirected graph $G=(V, E)$ is a complete graph if each pair of vertices is joined by an edge.

- A complete graph contains all possible edges.

Planar Graph

Def. An undirected graph $G=(V, E)$ is a planar graph if its vertices and edges can be drawn in a plane such that no two of the edges intersect.

- Most computational problems have good solutions in a planar graph.

Directed Acyclic Graph (DAG)

Def. A directed graph
$G=(V, E)$ is a directed acyclic graph if it is a directed graph with no directed cycles

- DAG is equivalent to a partial ordering of nodes.

Bipartite Graph

Def. An undirected graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness

4 Topological Ordering

Outline

(1) Graphs

(2) Connectivity and Graph Traversal

- Types of Graphs
(3) Bipartite Graphs
- Testing Bipartiteness

4 Topological Ordering

Testing Bipartiteness: Applications of BFS

Def. A graph $G=(V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found

Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Test Bipartiteness

Testing Bipartiteness using BFS

BFS (s)

1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: while head \leq tail do
4: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
5: for all neighbors u of v do
6: if u is "unvisited" then
7:
tail \leftarrow tail +1, queue $[$ tail $]=u$
8: mark u as "visited"

Testing Bipartiteness using BFS

test-bipartiteness (s)
1: head $\leftarrow 1$, tail $\leftarrow 1$, queue $[1] \leftarrow s$
2: mark s as "visited" and all other vertices as "unvisited"
3: color $[s] \leftarrow 0$
4: while head \leq tail do
5: $\quad v \leftarrow$ queue[head], head \leftarrow head +1
6: for all neighbors u of v do
7:
8:
if u is "unvisited" then
tail \leftarrow tail +1, queue $[$ tail $]=u$
mark u as "visited"
10:
11:
12:

$$
\operatorname{color}[u] \leftarrow 1-\text { color }[v]
$$

else if color $[u]=\operatorname{color}[v]$ then print(" G is not bipartite") and exit

