

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	

scheme 1

scheme 3

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total = 89
scheme 2 length	1	3	3	3	3	total = 87
scheme 3 length	1	4	4	3	2	total = 84

scheme 1

scheme 3

• Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm
- A: We can choose two letters and make them brothers in the tree.

• Focus on the "structure" of the optimum encoding tree

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

- Focus on the "structure" of the optimum encoding tree
- There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

• So we can irrevocably decide to make the two least frequent letters brothers.

• So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?

• So we can irrevocably decide to make the two least frequent letters brothers.

Q: Is the residual problem another instance of the best prefix codes problem?

A: Yes, though it is not immediate to see why.

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

 $\sum_{x \in S} f_x d_x$ $= \sum f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$ $x \in S \setminus \{x_1, x_2\}$ $= \sum f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$ $x \in S \setminus \{x_1, x_2\}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

 $\sum_{x \in S} f_x d_x$ $= \sum f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$ $x \in S \setminus \{x_1, x_2\}$ $= \sum f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$ $x \in S \setminus \{x_1, x_2\}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

 $\sum_{x \in S} f_x d_x$ $= \sum f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$ $x \in S \setminus \{x_1, x_2\}$ $= \sum f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$ $x \in S \setminus \{x_1, x_2\}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

$$\sum_{x \in S} f_x d_x$$

= $\sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$
= $\sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$
= $\sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x'} (d_{x'} + 1)$

85/97

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

 $\sum f_x d_x$ $x \in S$ $= \sum f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$ $x \in S \setminus \{x_1, x_2\}$ $= \sum f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$ $x \in S \setminus \{x_1, x_2\}$ $= \sum f_x d_x + f_{x'}(d_{x'} + 1)$ $x \in S \setminus \{x_1, x_2\}$ $\sum f_x d_x + f_{x'}$ $x \in S \setminus \{x_1, x_2\} \cup \{x'\}$

- f_x : the frequency of the letter x in the support.
- x_1 and x_2 : the two letters we decided to put together.
- d_x the depth of letter x in our output encoding tree.

$$\sum_{x \in S} f_x d_x$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x_1} d_{x_1} + f_{x_2} d_{x_2}$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + (f_{x_1} + f_{x_2}) d_{x_1}$$

$$= \sum_{x \in S \setminus \{x_1, x_2\}} f_x d_x + f_{x'} (d_{x'} + 1)$$

$$= \sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x + f_{x'}$$

In order to minimize

$$\sum_{x \in S} f_x d_x$$

we need to minimize

$$\sum_{x \in S \setminus \{x_1, x_2\} \cup \{x'\}} f_x d_x$$

subject to that d is the depth function for an encoding tree of $S \setminus \{x_1, x_2\}.$

• This is exactly the best prefix codes problem, with letters $S \setminus \{x_1, x_2\} \cup \{x'\}$ and frequency vector f!

Def. The codes given the greedy algorithm is called the Huffman codes.

Def. The codes given the greedy algorithm is called the Huffman codes.

$\mathsf{Huffman}(S, f)$

- 1: while $\left|S\right|>1~\mathrm{do}$
- 2: let x_1, x_2 be the two letters with the smallest f values
- 3: introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$
- 4: let x_1 and x_2 be the two children of x'
- 5: $S \leftarrow S \setminus \{x_1, x_2\} \cup \{x'\}$
- 6: return the tree constructed

$\mathsf{Huffman}(S, f)$

- 1: $Q \leftarrow \mathsf{build-priority-queue}(S)$
- 2: while Q.size > 1 do
- 3: $x_1 \leftarrow Q.\text{extract-min}()$
- 4: $x_2 \leftarrow Q.\text{extract-min}()$
- 5: introduce a new letter x' and let $f_{x'} = f_{x_1} + f_{x_2}$
- 6: let x_1 and x_2 be the two children of x'
- 7: $Q.insert(x', f_{x'})$
- 8: return the tree constructed

Outline

Toy Example: Box Packing

- Interval Scheduling
 Interval Partitioning
- Offline Caching
 Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- 5 Summary

6 Exercise Problems

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- $\bullet\,$ Interval scheduling problem: schedule the job j^* with the earliest deadline

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- Interval scheduling problem: schedule the job j^{\ast} with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy
- Interval scheduling problem: schedule the job j^{\ast} with the earliest deadline
- Offline Caching: evict the page that is used furthest in the future
- Huffman codes: make the two least frequent letters brothers

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is "safe" if there is always an optimum solution that "agrees with" the decision made according to the strategy.

 $\bullet\,$ Take an arbitrary optimum solution S

- Take an arbitrary optimum solution ${\cal S}$
- $\bullet~$ If S agrees with the decision made according to the strategy, done

- Take an arbitrary optimum solution ${\cal S}$
- $\bullet~$ If S agrees with the decision made according to the strategy, done
- $\bullet\,$ So assume S does not agree with decision

- $\bullet\,$ Take an arbitrary optimum solution $S\,$
- $\bullet~$ If S agrees with the decision made according to the strategy, done
- $\bullet\,$ So assume S does not agree with decision
- $\bullet\,$ Change S slightly to another optimum solution S' that agrees with the decision

- Take an arbitrary optimum solution S
- $\bullet~$ If S agrees with the decision made according to the strategy, done
- $\bullet\,$ So assume S does not agree with decision
- $\bullet\,$ Change S slightly to another optimum solution S' that agrees with the decision
 - Interval scheduling problem: exchange j^{\ast} with the first job in an optimal solution

- Take an arbitrary optimum solution S
- $\bullet~$ If S agrees with the decision made according to the strategy, done
- $\bullet\,$ So assume S does not agree with decision
- $\bullet\,$ Change S slightly to another optimum solution S' that agrees with the decision
 - Interval scheduling problem: exchange j^{\ast} with the first job in an optimal solution
 - Offline caching: a complicated "copying" algorithm

- Take an arbitrary optimum solution S
- $\bullet~$ If S agrees with the decision made according to the strategy, done
- $\bullet\,$ So assume S does not agree with decision
- $\bullet\,$ Change S slightly to another optimum solution S' that agrees with the decision
 - Interval scheduling problem: exchange j^{\ast} with the first job in an optimal solution
 - Offline caching: a complicated "copying" algorithm
 - Huffman codes: move the two least frequent letters to the deepest leaves.

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- $\bullet\,$ Interval scheduling problem: remove j^* and the jobs it conflicts with

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- $\bullet\,$ Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)
- $\bullet\,$ Interval scheduling problem: remove j^* and the jobs it conflicts with
- Offline caching: trivial
- Huffman codes: merge two letters into one

Outline

Toy Example: Box Packing

- Interval Scheduling
 Interval Partitioning
- Offline Caching
 Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- 5 Summary

Exercise: Fractional Knapsack Problem

Fractional Knapsack

Input: A knapsack of bounded capacity W; n items, each of weight $\{w_1, w_2, ..., w_n\}$ and each item also has a value $\{v_1, v_2, ..., v_n\}$.

Output: Select a set of fractions $\{p_1, p_2, ..., p_n\}$ $(0 \le p_i \le 1)$ for all items to maximize the total value $p_1v_1 + p_2v_2 + ... + p_nv_n$ while $\sum_{i \in [n]} w_i p_i \le W$.

Exercise: Fractional Knapsack Problem

Fractional Knapsack

Input: A knapsack of bounded capacity W;
n items, each of weight {w₁, w₂, ..., w_n} and each item also has a value {v₁, v₂, ..., v_n}.
Output: Select a set of fractions {p₁, p₂, ..., p_n} (0 < p_i < 1) for all

Output: Select a set of fractions $\{p_1, p_2, ..., p_n\}$ $(0 \le p_i \le 1)$ for all items to maximize the total value $p_1v_1 + p_2v_2 + ... + p_nv_n$ while $\sum_{i \in [n]} w_i p_i \le W$.

• Example: Given are a knapsack with capacity W = 20 and 5 items with the following weights and values:

	1	2	3	4	5
weight	10	6	5	8	12
value	15	10	10	10	10

Exercise: Scheduling Problem with Min Weighted Completion Time

Scheduling Problem

Input: Given are n jobs each $i \in [n]$ has a weight (or the importance) w_i and the length (or the time required) l_j . We define the completion time c_j of job j to be the sum of the lengths of jobs in the ordering up to and including l_j .

Output: An ordering of jobs that minimizes the weighted sum of completion times $\sum_{i \in [n]} w_i c_i$.

Exercise: Scheduling Problem with Min Weighted Completion Time

Scheduling Problem

Input: Given are n jobs each $i \in [n]$ has a weight (or the importance) w_i and the length (or the time required) l_j . We define the completion time c_j of job j to be the sum of the lengths of jobs in the ordering up to and including l_j .

- **Output:** An ordering of jobs that minimizes the weighted sum of completion times $\sum_{i \in [n]} w_i c_i$.
- Example: Given are 5 jobs with the following weights and lengths:

	1	2	3	4	5
weight	2	6	5	4	2
length	5	4	10	8	3