
80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

83/97

Which Two Letters Can Be Safely Put Together
As Brothers?

Focus on the “structure” of the optimum encoding tree

There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

83/97

Which Two Letters Can Be Safely Put Together
As Brothers?

Focus on the “structure” of the optimum encoding tree

There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

83/97

Which Two Letters Can Be Safely Put Together
As Brothers?

Focus on the “structure” of the optimum encoding tree

There are two deepest leaves that are brothers

best to put the two least

frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers.

83/97

Which Two Letters Can Be Safely Put Together
As Brothers?

Focus on the “structure” of the optimum encoding tree

There are two deepest leaves that are brothers

best to put the two least

frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers.

84/97

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem?

A: Yes, though it is not immediate to see why.

84/97

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem?

A: Yes, though it is not immediate to see why.

84/97

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem?

A: Yes, though it is not immediate to see why.

84/97

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers.

So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem?

A: Yes, though it is not immediate to see why.

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

x0

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

x0

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

x0

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

x0

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

85/97

fx: the frequency of the letter x in the support.

x1 and x2: the two letters we decided to put together.

dx the depth of letter x in our output encoding tree.

x1 x2

encoding tree for

S \ {x1, x2} [{x0}

x0

Def: fx0 = fx1 + fx2

X

x2S

fxdx

=
X

x2S\{x1,x2}

fxdx + fx1dx1 + fx2dx2

=
X

x2S\{x1,x2}

fxdx + (fx1 + fx2)dx1

=
X

x2S\{x1,x2}

fxdx + fx0(dx0 + 1)

=
X

x2S\{x1,x2}[{x0}

fxdx + fx0

86/97

In order to minimize X

x2S

fxdx,

we need to minimize
X

x2S\{x1,x2}[{x0}

fxdx,

subject to that d is the depth function for an encoding tree of
S \ {x1, x2}.

This is exactly the best prefix codes problem, with letters
S \ {x1, x2} [{x0} and frequency vector f !

87/97

Example

A B C D E F
589111527

87/97

Example

A B C D E F
589111527

13

87/97

Example

A B C D E F
589111527

1320

87/97

Example

A B C D E F
589111527

1320

28

87/97

Example

A B C D E F
589111527

1320

2847

87/97

Example

A B C D E F
589111527

1320

2847

75

87/97

Example

A B C D E F
589111527

1320

2847

75

0

0

0

0 0

1

1
1

1 1

87/97

Example

A B C D E F
589111527

1320

2847

75

0

0

0

0 0

1

1
1

1 1

A : 00

B : 10

C : 010

D : 011

E : 110

F : 111

88/97

Def. The codes given the greedy algorithm is called the Hu↵man
codes.

Hu↵man(S, f)
1: while |S| > 1 do

2: let x1, x2 be the two letters with the smallest f values
3: introduce a new letter x0 and let fx0 = fx1 + fx2

4: let x1 and x2 be the two children of x0

5: S S \ {x1, x2} [{x0}
6: return the tree constructed

88/97

Def. The codes given the greedy algorithm is called the Hu↵man
codes.

Hu↵man(S, f)
1: while |S| > 1 do

2: let x1, x2 be the two letters with the smallest f values
3: introduce a new letter x0 and let fx0 = fx1 + fx2

4: let x1 and x2 be the two children of x0

5: S S \ {x1, x2} [{x0}
6: return the tree constructed

89/97

Algorithm using Priority Queue

Hu↵man(S, f)
1: Q build-priority-queue(S)
2: while Q.size > 1 do

3: x1 Q.extract-min()
4: x2 Q.extract-min()
5: introduce a new letter x0 and let fx0 = fx1 + fx2

6: let x1 and x2 be the two children of x0

7: Q.insert(x0, fx0)

8: return the tree constructed

90/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

91/97

Summary for Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Interval scheduling problem: schedule the job j⇤ with the earliest
deadline

O✏ine Caching: evict the page that is used furthest in the future

Hu↵man codes: make the two least frequent letters brothers

91/97

Summary for Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Interval scheduling problem: schedule the job j⇤ with the earliest
deadline

O✏ine Caching: evict the page that is used furthest in the future

Hu↵man codes: make the two least frequent letters brothers

91/97

Summary for Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Interval scheduling problem: schedule the job j⇤ with the earliest
deadline

O✏ine Caching: evict the page that is used furthest in the future

Hu↵man codes: make the two least frequent letters brothers

91/97

Summary for Greedy Algorithms

Greedy Algorithm
Build up the solutions in steps

At each step, make an irrevocable decision using a “reasonable”
strategy

Interval scheduling problem: schedule the job j⇤ with the earliest
deadline

O✏ine Caching: evict the page that is used furthest in the future

Hu↵man codes: make the two least frequent letters brothers

92/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.

92/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision

Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision

Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision

Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision

Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision
Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution

O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision
Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm

Hu↵man codes: move the two least frequent letters to the deepest
leaves.

93/97

Proving a Strategy is Safe

Take an arbitrary optimum solution S

If S agrees with the decision made according to the strategy, done

So assume S does not agree with decision

Change S slightly to another optimum solution S 0 that agrees
with the decision
Interval scheduling problem: exchange j⇤ with the first job in an
optimal solution
O✏ine caching: a complicated “copying” algorithm
Hu↵man codes: move the two least frequent letters to the deepest
leaves.

94/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Interval scheduling problem: remove j⇤ and the jobs it conflicts
with

O✏ine caching: trivial

Hu↵man codes: merge two letters into one

94/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Interval scheduling problem: remove j⇤ and the jobs it conflicts
with

O✏ine caching: trivial

Hu↵man codes: merge two letters into one

94/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Interval scheduling problem: remove j⇤ and the jobs it conflicts
with

O✏ine caching: trivial

Hu↵man codes: merge two letters into one

94/97

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
Safety: Prove that the reasonable strategy is “safe” (key)

Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Interval scheduling problem: remove j⇤ and the jobs it conflicts
with

O✏ine caching: trivial

Hu↵man codes: merge two letters into one

95/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

96/97

Exercise: Fractional Knapsack Problem

Fractional Knapsack
Input: A knapsack of bounded capacity W ;

n items, each of weight {w1, w2, ..., wn} and each item
also has a value {v1, v2, ..., vn}.

Output: Select a set of fractions {p1, p2, ..., pn} (0 pi 1) for all
items to maximize the total value p1v1 + p2v2 + ...+ pnvn
while

P
i2[n] wipi W.

Example: Given are a knapsack with capacity W = 20 and 5 items
with the following weights and values:

1 2 3 4 5
weight 10 6 5 8 12
value 15 10 10 10 10

96/97

Exercise: Fractional Knapsack Problem

Fractional Knapsack
Input: A knapsack of bounded capacity W ;

n items, each of weight {w1, w2, ..., wn} and each item
also has a value {v1, v2, ..., vn}.

Output: Select a set of fractions {p1, p2, ..., pn} (0 pi 1) for all
items to maximize the total value p1v1 + p2v2 + ...+ pnvn
while

P
i2[n] wipi W.

Example: Given are a knapsack with capacity W = 20 and 5 items
with the following weights and values:

1 2 3 4 5
weight 10 6 5 8 12
value 15 10 10 10 10

97/97

Exercise: Scheduling Problem with Min Weighted
Completion Time

Scheduling Problem
Input: Given are n jobs each i 2 [n] has a weight (or the

importance) wi and the length (or the time required) lj.
We define the completion time cj of job j to be the sum of
the lengths of jobs in the ordering up to and including lj.

Output: An ordering of jobs that minimizes the weighted sum of
completion times

P
i2[n] wici.

Example: Given are 5 jobs with the following weights and lengths:

1 2 3 4 5
weight 2 6 5 4 2
length 5 4 10 8 3

97/97

Exercise: Scheduling Problem with Min Weighted
Completion Time

Scheduling Problem
Input: Given are n jobs each i 2 [n] has a weight (or the

importance) wi and the length (or the time required) lj.
We define the completion time cj of job j to be the sum of
the lengths of jobs in the ordering up to and including lj.

Output: An ordering of jobs that minimizes the weighted sum of
completion times

P
i2[n] wici.

Example: Given are 5 jobs with the following weights and lengths:

1 2 3 4 5
weight 2 6 5 4 2
length 5 4 10 8 3

