Properties of Encoding Tree

1
,% \ @ Rooted binary tree

o Left edges labelled 0 and right

/ \® / \@ edges labelled 1
@ A leaf corresponds to a code
E@ 5 for some letter
@ If coding scheme is not
! wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

example

letters a | blc|d]| e
frequencies 1834 /6|10

AN

ISV @g\@

scheme 1 scheme2 ~ scheme

example

letters a|blc|d] e

frequencies 1834 /6|10
scheme 1 length || 2 |3 |3 |2]| 2 | total =89
scheme 2 length || 1 |3 |3 |3 | 3 | total =87
scheme 3 length | 1 |4 4| 3| 2 || total = 84

AN TN 7Y

\
S

scheme 1 scheme 2 scheme 3

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make?

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?
@ Not clear how to design the greedy algorithm

e Example Input: (a: 18, b: 3, ¢: 4, d: 6, e: 10)

Q: What types of decisions should we make? J

@ Can we directly give a code for some letter?

@ Hard to design a strategy; residual problem is complicated.

@ Can we partition the letters into left and right sub-trees?
@ Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree. |

Which Two Letters Can Be Safely Put Together

As Brothers?

@ Focus on the “structure” of the optimum encoding tree

I

Which Two Letters Can Be Safely Put Together

As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

I

Which Two Letters Can Be Safely Put Together

As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

Q best to put the two least
é __.-frenquent symbols here!

Which Two Letters Can Be Safely Put Together

As Brothers?

@ Focus on the “structure” of the optimum encoding tree

@ There are two deepest leaves that are brothers

best to put the two least

(;Qg‘ " __.-frenquent symbols here!

Lemma It is safe to make the two least frequent letters brothers. J

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? J

Lemma There is an optimum encoding tree, where the two least
frequent letters are brothers. J

@ So we can irrevocably decide to make the two least frequent
letters brothers.

Q: Is the residual problem another instance of the best prefix codes
problem? J

A: Yes, though it is not immediate to see why. J

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

our output encoding tree.

> fuds

€S

= Z fxdm + fmldxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

our output encoding tree.

> fuds

€S

= Z fxdm + fmldxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.

@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter x in

O

()
&) @

Def: fx’ — fml + sz

our output encoding tree.

> fuds

€S

= Z fxdm + fmldxl + fmzdﬂm

zeS\{z1,z2}

zeS\{z1,z2}

@ f,: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}

zeS\{z1,x2}
@) @

Def: fa?’ - fm + fﬂCz

@ f,: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

Jads
. >
e Z fxdm + fmldxl + fw2d3?2

zeS\{z1,z2}

zeS\{z1,z2}

() = Y fedet fulde +1)

zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fgg/ — fxl + fmz

zeS\{z1,z2}U{z}

@ f,: the frequency of the letter x in the support.
@ x; and x5: the two letters we decided to put together.

@ d, the depth of letter = in our output encoding tree.

> fuds
O zeS
= Z fxdm + fmldxl + fmzdxg
encoding tree for z€S\{z1,22}

S\ {21, 22} U {2/} = > felat (for + far)da,

zeS\{z1,22}
zeS\{z1,x2}
@ @ = Z .ffl}d.’lf + fI/
Def: fl’, — fml + fftg

zeS\{z1,z2}U{z}

In order to minimize

> foda,

€S

we need to minimize

> fuda

zeS\{z1,z2}U{z’'}

subject to that d is the depth function for an encoding tree of
S \ {$1, .1'2}.

@ This is exactly the best prefix codes problem, with letters
S\ {z1, 22} U {2’} and frequency vector f!

@27 15 @11 @9 @8 @5

@27 15 @11 @9 &5

. 20 13

Example

Example

Example

Def. The codes given the greedy algorithm is called the Huffman J
codes.

Def. The codes given the greedy algorithm is called the Huffman
codes.

Huffman(S, f)

1: while |S| > 1 do

2 let z1, x5 be the two letters with the smallest f values
3 introduce a new letter 2" and let f,y = fo, + fu,

4: let z; and 25 be the two children of 2’

5 S+ S\ {z1,z} U {2}

6:

return the tree constructed

Algorithm using Priority Queue

Huffman(S, f)

1: @ < build-priority-queue(.S)

2: while ().size > 1 do

3 x1 < Q.extract-min()

4 T +— Q.extract-min()

5: introduce a new letter 2’ and let f,y = fo, + fu,
6 let z; and 25 be the two children of z’

7

8

Q.insert (2, fur)

. return the tree constructed

e Summary

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Summary for Greedy Algorithms

Greedy Algorithm

@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

Summary for Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

o Offline Caching: evict the page that is used furthest in the future

Summary for Greedy Algorithms

Greedy Algorithm

@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

@ Interval scheduling problem: schedule the job j* with the earliest
deadline

o Offline Caching: evict the page that is used furthest in the future

Huffman codes: make the two least frequent letters brothers

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is “safe” if there is always an optimum solution
that “agrees with” the decision made according to the strategy.

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy, done

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done

@ So assume S does not agree with decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

o Interval scheduling problem: exchange j* with the first job in an
optimal solution

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S
o If S agrees with the decision made according to the strategy, done
@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision
o Interval scheduling problem: exchange j* with the first job in an
optimal solution
e Offline caching: a complicated “copying” algorithm

Proving a Strategy is Safe

@ Take an arbitrary optimum solution S

o If S agrees with the decision made according to the strategy, done

@ So assume S does not agree with decision

@ Change S slightly to another optimum solution S’ that agrees
with the decision

o Interval scheduling problem: exchange j* with the first job in an
optimal solution

e Offline caching: a complicated “copying” algorithm

e Huffman codes: move the two least frequent letters to the deepest
leaves.

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Summary for Greedy Algorithms

Analysis of Greedy Algorithm

@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the

strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with
@ Offline caching: trivial

Summary for Greedy Algorithms

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

@ Interval scheduling problem: remove j* and the jobs it conflicts
with
@ Offline caching: trivial

@ Huffman codes: merge two letters into one

e Exercise Problems

Exercise: Fractional Knapsack Problem

Fractional Knapsack

Input: A knapsack of bounded capacity W;
n items, each of weight {wy, ws, ..., w,} and each item
also has a value {vy, vy, ..., v, }.
Output: Select a set of fractions {p1, p2,...,pn} (0 < p; < 1) for all
items to maximize the total value pivy + pavs + ... + Prvs,
while Zie[n] w;p; < W.

Exercise: Fractional Knapsack Problem

Fractional Knapsack

Input: A knapsack of bounded capacity W;
n items, each of weight {wy, ws, ..., w,} and each item
also has a value {vy, vy, ..., v, }.

Output: Select a set of fractions {p1, p2,...,pn} (0 < p; < 1) for all

items to maximize the total value pivy + pavs + ... + Prvs,
while Zie[n] w;p; < W.

v

@ Example: Given are a knapsack with capacity W = 20 and 5 items
with the following weights and values:

1121345

weight | 10 | 6 | 5 12

value | 15|10 | 10 | 10 | 10

(0]

Exercise: Scheduling Problem with Min Weighted

Completion Time

Scheduling Problem
Input: Given are n jobs each i € [n] has a weight (or the
importance) w; and the length (or the time required) [;.
We define the completion time ¢; of job j to be the sum of
the lengths of jobs in the ordering up to and including ;.

Output: An ordering of jobs that minimizes the weighted sum of
completion times Zie[n] W;C;.

Exercise: Scheduling Problem with Min Weighted

Completion Time

Scheduling Problem
Input: Given are n jobs each i € [n] has a weight (or the
importance) w; and the length (or the time required) [;.
We define the completion time ¢; of job j to be the sum of
the lengths of jobs in the ordering up to and including ;.

Output: An ordering of jobs that minimizes the weighted sum of
completion times Zie[n] W;C;.

@ Example: Given are 5 jobs with the following weights and lengths:
11213 |41]5
weight |2 6| 5 |42
length | 54|10 (8|3

