Running Time of Prim's Algorithm Using Priority

 Queue$O(n) \times($ time for extract_min $)+O(m) \times($ time for decrease_key $)$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	$O(1)$	$O(n \log n+m)$

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \backslash U)$, such that (u, v) is the lightest edge between U and $V \backslash U$.

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \backslash U)$, such that (u, v) is the lightest edge between U and $V \backslash U$.

- (c, f) is in MST because of $\operatorname{cut}(\{a, b, c, i\}, V \backslash\{a, b, c, i\})$

Assumption Assume all edge weights are different.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \backslash U)$, such that (u, v) is the lightest edge between U and $V \backslash U$.

- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \backslash\{a, b, c, i\})$
- (i, g) is not in MST because no such cut exists

"Evidence" for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in \mathrm{MST} \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin \mathrm{MST} \leftrightarrow$ there is a cycle in which e is the heaviest edge

"Evidence" for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in \mathrm{MST} \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin \mathrm{MST} \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

"Evidence" for $e \in$ MST or $e \notin$ MST

Assumption Assume all edge weights are different.

- $e \in \mathrm{MST} \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin \mathrm{MST} \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

(1) Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm

(2) Single Source Shortest Paths

- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights
(4) All-Pair Shortest Paths and Floyd-Warshall

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	$O(n+m)$
Dijkstra	U / D	$\mathbb{R}_{\geq 0}$	SS	$O(n \log n+m)$
Bellman-Ford	U / D	\mathbb{R}	SS	$O(n m)$
Floyd-Warshall	U / D	\mathbb{R}	AP	$O\left(n^{3}\right)$

- DAG $=$ directed acyclic graph $\quad \mathrm{U}=$ undirected $\quad \mathrm{D}=$ directed
- $\mathrm{SS}=$ single source $\quad \mathrm{AP}=$ all pairs

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$ $w: E \rightarrow \mathbb{R}_{\geq 0}$
Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s, t \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest path from s to t

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$
Reason for Considering Single Source Shortest Paths
Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: (directed or undirected) graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

Problem

- We do not know how to solve s - t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths

Input: directed graph $G=(V, E), s \in V$

$$
w: E \rightarrow \mathbb{R}_{\geq 0}
$$

Output: $\pi[v], v \in V \backslash s$: the parent of v in shortest path tree $d[v], v \in V \backslash s$: the length of shortest path from s to v

Q: How to compute shortest paths from s when all edges have weight 1?

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!

Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a pah of $w(u, v)$ unit-weight edges

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS virtually
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!

Shortest Path Algorithm by Running BFS Virtually

1: $S \leftarrow\{s\}, d(s) \leftarrow 0$
2: while $|S| \leq n$ do
3: \quad find a $v \notin S$ that minimizes
$\min _{u \in S:(u, v) \in E}\{d[u]+w(u, v)\}$
4: $\quad S \leftarrow S \cup\{v\}$
5: $\quad d[v] \leftarrow \min _{u \in S:(u, v) \in E}\{d[u]+w(u, v)\}$

Virtual BFS: Example

Virtual BFS: Example

Time 0

Virtual BFS: Example

Virtual BFS: Example

Time 4

Virtual BFS: Example

Virtual BFS: Example

Virtual BFS: Example

Time 10

Outline

(1) Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm

(2) Single Source Shortest Paths

- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Dijkstra's Algorithm

Dijkstra(G, w, s)

1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
2: while $S \neq V$ do
3: $\quad u \leftarrow$ vertex in $V \backslash S$ with the minimum $d[u]$
4: \quad add u to S
5: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
6: \quad if $d[u]+w(u, v)<d[v]$ then
7:
$d[v] \leftarrow d[u]+w(u, v)$
8:
$\pi[v] \leftarrow u$
9: return (d, π)

Dijkstra's Algorithm

Dijkstra (G, w, s)

1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
2: while $S \neq V$ do
3: $\quad u \leftarrow$ vertex in $V \backslash S$ with the minimum $d[u]$
4: \quad add u to S
5: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
6: \quad if $d[u]+w(u, v)<d[v]$ then
7:
$d[v] \leftarrow d[u]+w(u, v)$
8: $\quad \pi[v] \leftarrow u$
9: return (d, π)

- Running time $=O\left(n^{2}\right)$

$58 / 88$

$58 / 88$

$58 / 88$

Improved Running Time using Priority Queue

Dijkstra (G, w, s)

1 :
2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V: Q . \operatorname{insert}(v, d[v])$
4: while $S \neq V$ do
5: $\quad u \leftarrow Q$.extract_min ()
6: $\quad S \leftarrow S \cup\{u\}$
7: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
8:
9 : if $d[u]+w(u, v)<d[v]$ then $d[v] \leftarrow d[u]+w(u, v), Q$. decrease_key $(v, d[v])$
10:

$$
\pi[v] \leftarrow u
$$

11: return (π, d)

Recall: Prim's Algorithm for MST

MST-Prim (G, w)

1: $s \leftarrow$ arbitrary vertex in G
2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \backslash\{s\}$
3: $Q \leftarrow$ empty queue, for each $v \in V: Q . \operatorname{insert}(v, d[v])$
4: while $S \neq V$ do
5: $\quad u \leftarrow Q$.extract_min()
6: $\quad S \leftarrow S \cup\{u\}$
7: \quad for each $v \in V \backslash S$ such that $(u, v) \in E$ do
8: \quad if $w(u, v)<d[v]$ then
9 :
$d[v] \leftarrow w(u, v), Q$. decrease_key $(v, d[v])$
$\pi[v] \leftarrow u$
11: $\operatorname{return}\{(u, \pi[u]) \mid u \in V \backslash\{s\}\}$

Improved Running Time

Running time:
$O(n) \times($ time for extract_min $)+O(m) \times$ (time for decrease_key $)$

Priority-Queue	extract_min	decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	$O(1)$	$O(n \log n+m)$

