Running Time of Prim’s Algorithm Using Priority Queue

\[O(n) \times \text{(time for extract_min)} + O(m) \times \text{(time for decrease_key)} \]

<table>
<thead>
<tr>
<th>concrete DS</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>overall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>
Assumption Assume all edge weights are different.

Lemma \((u, v)\) is in MST, if and only if there exists a cut \((U, V \setminus U)\), such that \((u, v)\) is the lightest edge between \(U\) and \(V \setminus U\).
Assumption Assume all edge weights are different.

Lemma \((u,v)\) is in MST, if and only if there exists a cut \((U, V \setminus U)\), such that \((u,v)\) is the lightest edge between \(U\) and \(V \setminus U\).

\[\begin{array}{c}
(a, b) \quad 5 \\
(b, c) \quad 8 \\
(c, f) \quad 13 \\
(f, g) \quad 2 \\
(g, h) \quad 7 \\
(h, a) \quad 11 \\
\end{array}\]

\((c, f)\) is in MST because of cut \((\{a, b, c, i\}, V \setminus \{a, b, c, i\})\)
Assumption Assume all edge weights are different.

Lemma \((u, v)\) is in MST, if and only if there exists a cut \((U, V \setminus U)\), such that \((u, v)\) is the lightest edge between \(U\) and \(V \setminus U\).

- \((c, f)\) is in MST because of cut \((\{a, b, c, i\}, V \setminus \{a, b, c, i\})\)
- \((i, g)\) is not in MST because no such cut exists
“Evidence” for $e \in \text{MST}$ or $e \notin \text{MST}$

Assumption Assume all edge weights are different.

- $e \in \text{MST} \iff$ there is a cut in which e is the lightest edge
- $e \notin \text{MST} \iff$ there is a cycle in which e is the heaviest edge
“Evidence” for $e \in \text{MST}$ or $e \notin \text{MST}$

Assumption Assume all edge weights are different.

- $e \in \text{MST} \iff$ there is a cut in which e is the lightest edge
- $e \notin \text{MST} \iff$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge
Assumption Assume all edge weights are different.

- \(e \in \text{MST} \iff \) there is a cut in which \(e \) is the lightest edge
- \(e \notin \text{MST} \iff \) there is a cycle in which \(e \) is the heaviest edge

Exactly one of the following is true:

- There is a cut in which \(e \) is the lightest edge
- There is a cycle in which \(e \) is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Graph</th>
<th>Weights</th>
<th>SS?</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple DP</td>
<td>DAG</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(n + m)$</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>U/D</td>
<td>$\mathbb{R}_{\geq 0}$</td>
<td>SS</td>
<td>$O(n \log n + m)$</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>SS</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Floyd-Warshall</td>
<td>U/D</td>
<td>\mathbb{R}</td>
<td>AP</td>
<td>$O(n^3)$</td>
</tr>
</tbody>
</table>

- $\text{DAG} = \text{directed acyclic graph}$
- $\text{U} = \text{undirected}$
- $\text{D} = \text{directed}$
- $\text{SS} = \text{single source}$
- $\text{AP} = \text{all pairs}$
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest path from s to t
s-t Shortest Paths

Input: (directed or undirected) graph \(G = (V, E), \ s, t \in V \)
\[w : E \to \mathbb{R}_{\geq 0} \]

Output: shortest path from \(s \) to \(t \)
s-t Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s, t \in V$

$$w : E \rightarrow \mathbb{R}_{\geq 0}$$

Output: shortest path from s to t
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
Single Source Shortest Paths

Input: (directed or undirected) graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: (directed or undirected) graph \(G = (V, E) \), \(s \in V \)

\[w : E \to \mathbb{R}_{\geq 0} \]

Output: shortest paths from \(s \) to all other vertices \(v \in V \)

Reason for Considering Single Source Shortest Paths

- We do not know how to solve \(s-t \) shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight
Single Source Shortest Paths

Input: directed graph $G = (V, E)$, $s \in V$

$w : E \rightarrow \mathbb{R}_{\geq 0}$

Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree

$d[v], v \in V \setminus s$: the length of shortest path from s to v
Q: How to compute shortest paths from s when all edges have weight 1?
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Q: How to compute shortest paths from s when all edges have weight 1?

A: Breadth first search (BFS) from source s
Assumption Weights $w(u, v)$ are integers (w.l.o.g.).
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges.
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

![Diagram showing equivalent paths]

Shortest Path Algorithm by Running BFS

1: replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2: run BFS
3: $\pi[v] \leftarrow$ vertex from which v is visited
4: $d[v] \leftarrow$ index of the level containing v
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges.

![Diagram of an edge and a path](image)

Shortest Path Algorithm by Running BFS

1. replace (u, v) of length $w(u, v)$ with a path of $w(u, v)$ unit-weight edges, for every $(u, v) \in E$
2. run BFS
3. $\pi[v] \leftarrow$ vertex from which v is visited
4. $d[v] \leftarrow$ index of the level containing v

- Problem: $w(u, v)$ may be too large!
Assumption Weights $w(u, v)$ are integers (w.l.o.g).

- An edge of weight $w(u, v)$ is equivalent to a path of $w(u, v)$ unit-weight edges

\[
\begin{align*}
\text{Shortest Path Algorithm by Running BFS} \\
1: & \text{ replace } (u, v) \text{ of length } w(u, v) \text{ with a path of } w(u, v) \text{ unit-weight edges, for every } (u, v) \in E \\
2: & \text{ run BFS virtually} \\
3: & \pi[v] \leftarrow \text{ vertex from which } v \text{ is visited} \\
4: & d[v] \leftarrow \text{ index of the level containing } v
\end{align*}
\]

- Problem: $w(u, v)$ may be too large!
Shortest Path Algorithm by Running BFS Virtually

1: \(S \leftarrow \{s\}, d(s) \leftarrow 0 \)
2: \textbf{while } |S| \leq n \textbf{ do}
3: \text{find a } v \notin S \text{ that minimizes } \min_{u \in S: (u,v) \in E} \{d[u] + w(u, v)\}
4: \(S \leftarrow S \cup \{v\} \)
5: \(d[v] \leftarrow \min_{u \in S: (u,v) \in E} \{d[u] + w(u, v)\} \)
Virtual BFS: Example
Virtual BFS: Example

Time 0
Virtual BFS: Example

Time 2
Virtual BFS: Example

Time 4
Virtual BFS: Example

Time 7
Virtual BFS: Example

Time 9
Virtual BFS: Example

Time 10
Outline

1. Minimum Spanning Tree
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. Single Source Shortest Paths
 - Dijkstra’s Algorithm

3. Shortest Paths in Graphs with Negative Weights

4. All-Pair Shortest Paths and Floyd-Warshall
Dijkstra’s Algorithm

Dijkstra\((G, w, s)\)

1: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
2: \textbf{while} \(S \neq V \) \textbf{do}
3: \(u \leftarrow \text{vertex in} \ V \setminus S \text{ with the minimum} \ d[u] \)
4: \ add \(u \) to \(S \)
5: \textbf{for} each \(v \in V \setminus S \) such that \((u, v) \in E \) \textbf{do}
6: \quad \textbf{if} \ d[u] + w(u, v) < d[v] \textbf{ then}
7: \quad \quad d[v] \leftarrow d[u] + w(u, v)
8: \quad \pi[v] \leftarrow u
9: \textbf{return} \ (d, \pi)

Running time = \(O(n^2) \)
Dijkstra's Algorithm

Dijkstra(G, w, s)

1: $S \leftarrow \emptyset$, $d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$
2: while $S \neq V$ do
3: $u \leftarrow$ vertex in $V \setminus S$ with the minimum $d[u]$
4: add u to S
5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do
6: if $d[u] + w(u, v) < d[v]$ then
7: $d[v] \leftarrow d[u] + w(u, v)$
8: $\pi[v] \leftarrow u$
9: return (d, π)

- Running time $= O(n^2)$
Improved Running Time using Priority Queue

Dijkstra\((G, w, s)\)

1: \(s \leftarrow \text{arbitrary vertex in } G\)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0\) and \(d[v] \leftarrow \infty\) for every \(v \in V \setminus \{s\}\)
3: \(Q \leftarrow \text{empty queue, for each } v \in V:\ Q.\text{insert}(v, d[v])\)
4: \textbf{while } S \neq V \textbf{ do}
5: \(u \leftarrow Q.\text{extract_min()}\)
6: \(S \leftarrow S \cup \{u\}\)
7: \textbf{for each } v \in V \setminus S \text{ such that } (u, v) \in E \textbf{ do}
8: \quad \textbf{if } d[u] + w(u, v) < d[v] \textbf{ then}
9: \quad \quad d[v] \leftarrow d[u] + w(u, v), \ Q.\text{decrease_key}(v, d[v])
10: \quad \pi[v] \leftarrow u
11: \textbf{return } (\pi, d)
Recall: Prim’s Algorithm for MST

\textbf{MST-Prim}(G, w)

1: \(s \leftarrow \text{arbitrary vertex in } G \)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d[v] \leftarrow \infty \text{ for every } v \in V \setminus \{s\} \)
3: \(Q \leftarrow \text{empty queue, for each } v \in V: Q.\text{insert}(v, d[v]) \)
4: \(\textbf{while } S \neq V \textbf{ do} \)
5: \(u \leftarrow Q.\text{extract_min}() \)
6: \(S \leftarrow S \cup \{u\} \)
7: \(\textbf{for each } v \in V \setminus S \text{ such that } (u, v) \in E \textbf{ do} \)
8: \(\textbf{if } w(u, v) < d[v] \textbf{ then} \)
9: \(d[v] \leftarrow w(u, v), Q.\text{decrease_key}(v, d[v]) \)
10: \(\pi[v] \leftarrow u \)
11: \(\textbf{return } \{(u, \pi[u])|u \in V \setminus \{s\}\} \)
Improved Running Time

Running time:
$O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

<table>
<thead>
<tr>
<th>Priority-Queue</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(m \log n)$</td>
</tr>
<tr>
<td>Fibonacci Heap</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(n \log n + m)$</td>
</tr>
</tbody>
</table>