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Running Time of Prim’s Algorithm Using Priority
Queue

O(n)⇥ (time for extract min) + O(m)⇥ (time for decrease key)

concrete DS extract min decrease key overall time
heap O(log n) O(log n) O(m log n)

Fibonacci heap O(log n) O(1) O(n log n+m)
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Assumption Assume all edge weights are di↵erent.

Lemma (u, v) is in MST, if and only if there exists a cut (U, V \U),
such that (u, v) is the lightest edge between U and V \ U .

(c, f) is in MST because of cut
�
{a, b, c, i}, V \ {a, b, c, i}

�

(i, g) is not in MST because no such cut exists
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“Evidence” for e 2 MST or e /2 MST

Assumption Assume all edge weights are di↵erent.

e 2 MST $ there is a cut in which e is the lightest edge

e /2 MST $ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

There is a cut in which e is the lightest edge

There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs
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s-t Shortest Paths
Input: (directed or undirected) graph G = (V,E), s, t 2 V

w : E ! R�0

Output: shortest path from s to t
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Single Source Shortest Paths
Input: (directed or undirected) graph G = (V,E), s 2 V

w : E ! R�0

Output: shortest paths from s to all other vertices v 2 V

Reason for Considering Single Source Shortest Paths
Problem

We do not know how to solve s-t shortest path problem more
e�ciently than solving single source shortest path problem

Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight
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Single Source Shortest Paths
Input: directed graph G = (V,E), s 2 V

w : E ! R�0

Output: ⇡[v], v 2 V \ s: the parent of v in shortest path tree

d[v], v 2 V \ s: the length of shortest path from s to v
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Q: How to compute shortest paths from s when all edges have
weight 1?

A: Breadth first search (BFS) from source s
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Assumption Weights w(u, v) are integers (w.l.o.g).

An edge of weight w(u, v) is equivalent to a pah of w(u, v)
unit-weight edges

Shortest Path Algorithm by Running BFS
1: replace (u, v) of length w(u, v) with a path of w(u, v)

unit-weight edges, for every (u, v) 2 E

2: run BFS
3: ⇡[v] vertex from which v is visited
4: d[v] index of the level containing v

Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS
1: replace (u, v) of length w(u, v) with a path of w(u, v)

unit-weight edges, for every (u, v) 2 E
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3: ⇡[v] vertex from which v is visited
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Problem: w(u, v) may be too large!
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Shortest Path Algorithm by Running BFS Virtually
1: S  {s}, d(s) 0
2: while |S|  n do

3: find a v /2 S that minimizes min
u2S:(u,v)2E

{d[u] + w(u, v)}

4: S  S [ {v}
5: d[v] minu2S:(u,v)2E{d[u] + w(u, v)}



55/88

Virtual BFS: Example
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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
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3 Shortest Paths in Graphs with Negative Weights
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Dijkstra’s Algorithm

Dijkstra(G,w, s)
1: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
2: while S 6= V do

3: u vertex in V \ S with the minimum d[u]
4: add u to S

5: for each v 2 V \ S such that (u, v) 2 E do

6: if d[u] + w(u, v) < d[v] then
7: d[v] d[u] + w(u, v)
8: ⇡[v] u

9: return (d, ⇡)

Running time = O(n2)
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Improved Running Time using Priority Queue

Dijkstra(G,w, s)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if d[u] + w(u, v) < d[v] then
9: d[v] d[u] + w(u, v), Q.decrease key(v, d[v])
10: ⇡[v] u

11: return (⇡, d)
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Recall: Prim’s Algorithm for MST

MST-Prim(G,w)
1: s arbitrary vertex in G

2: S  ;, d(s) 0 and d[v] 1 for every v 2 V \ {s}
3: Q empty queue, for each v 2 V : Q.insert(v, d[v])
4: while S 6= V do

5: u Q.extract min()
6: S  S [ {u}
7: for each v 2 V \ S such that (u, v) 2 E do

8: if w(u, v) < d[v] then
9: d[v] w(u, v), Q.decrease key(v, d[v])

10: ⇡[v] u

11: return
�
(u, ⇡[u])|u 2 V \ {s}
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Improved Running Time

Running time:
O(n)⇥ (time for extract min) +O(m)⇥ (time for decrease key)

Priority-Queue extract min decrease key Time
Heap O(log n) O(log n) O(m log n)

Fibonacci Heap O(log n) O(1) O(n log n+m)


