Running Time of Prim’s Algorithm Using Priority

Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)

concrete DS | extract_min | decrease_key overall time
heap O(logn) O(logn) O(mlogn)
Fibonacci heap | O(logn) O(1) O(nlogn +m)
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Assumption Assume all edge weights are different. J

Lemma (u,v) is in MST, if and only if there exists a cut (U, V' \ U),
such that (u,v) is the lightest edge between U and V' \ U. J

(¢, f) is in MST because of cut ({a, b,c,i},V\{a,b,c, @})

(]
@ (i,g) is not in MST because no such cut exists
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“Evidence” for e € MST or e ¢ MST

Assumption Assume all edge weights are different. J

@ ¢ € MST < there is a cut in which ¢ is the lightest edge
@ ¢ ¢ MST < there is a cycle in which e is the heaviest edge

Exactly one of the following is true:
@ There is a cut in which ¢ is the lightest edge

@ There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.



© Single Source Shortest Paths
@ Dijkstra's Algorithm



algorithm

| graph | weights | SS? | running time

Simple DP | DAG | R | SS | O(ntm)
Dijkstra U/D | R SS | O(nlogn + m)
Bellman-Ford | U/D R SS O(nm)
Floyd-Warshall | U/D R AP O(n?)

@ DAG = directed acyclic graph

@ SS = single source

AP = all pairs

U = undirected D = directed
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Single Source Shortest Paths
Input: directed graph G = (V, E), s€ V
w:E = Ry
Output: shortest paths from s to all other vertices v € V/

Reason for Considering Single Source Shortest Paths

Problem

@ We do not know how to solve s-t shortest path problem more
efficiently than solving single source shortest path problem

@ Shortest paths in directed graphs is more general than in
undirected graphs: we can replace every undirected edge with two
anti-parallel edges of the same weight



Input: directed graph G = (V, E), s € V
w:E— Ry
Output: 7[v],v € V '\ s: the parent of v in shortest path tree
d[v],v € V'\ s: the length of shortest path from s to v

51/88
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Assumption Weights w(u,v) are integers (w.l.0.g).

@ An edge of weight w(u,v) is equivalent to a pah of w(u,v)
unit-weight edges

; | ; b ohohohe

Shortest Path Algorithm by Running BFS

1: replace (u,v) of length w(u,v) with a path of w(u,v)
unit-weight edges, for every (u,v) € E

2: run BFS virtually

3: m[v] < vertex from which v is visited

4: d[v] < index of the level containing v

@ Problem: w(u,v) may be too large!



Shortest Path Algorithm by Running BFS Virtually
1: S < {s},d(s) <0
2: while |S| < n do
3: find a v ¢ S that minimizes  min  {d[u] + w(u,v)}
u€S:(u,v)EE
S+ Su{v}
dlv] ¢ minyes.(umer{du] + w(u,v)}

OIS
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© Single Source Shortest Paths
@ Dijkstra's Algorithm



Dijkstra’s Algorithm

Dijkstra(G, w, s)
1: S« 0,d(s) « 0 and d[v] < oo for every v € V' \ {s}
2. while S # V do
3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S
5 for each v € V' \ S such that (u,v) € E do
6: if d[u] + w(u,v) < d[v] then
7: d[v] + dlu] + w(u,v)
8 m[v] « u
9: return (d, ) )




Dijkstra’s Algorithm

Dijkstra(G, w, s)
1: S« 0,d(s) « 0 and d[v] < oo for every v € V' \ {s}
2. while S # V do
3: u <— vertex in V'\ .S with the minimum d[u]
4 add u to S
5 for each v € V' \ S such that (u,v) € E do
6: if d[u] + w(u,v) < d[v] then
7: d[v] + dlu] + w(u,v)
8 m[v] « u
9: return (d, ) )

@ Running time = O(n?)
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Improved Running Time using Priority Queue

Dijkstra(G, w, s)

1:

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}

3: () + empty queue, for each v € V: Q.insert(v, d[v])

4 while S # V do

5: u < @.extract_min()

6: S« SuU{u}

7: for each v € V'\ S such that (u,v) € E do

8: if d[u] +w(u,v) < d[v] then

9: d[v] « d[u] + w(u,v), Q.decrease key(v, d[v])
10: m[v] + u

11: return (7, d) )




Recall: Prim’s Algorithm for MST

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) « 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}

A B T o

—
=

1
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Improved Running Time

Running time:
O(n) x (time for extract_min) + O(m) X (time for decrease_key)

Priority-Queue | extract_min | decrease_key Time
Heap O(logn) O(logn) O(mlogn)
Fibonacci Heap | O(logn) O(1) O(nlogn +m)




