Running Time of Prim's Algorithm Using Priority Queue

 $O(n) \times (\text{time for extract_min}) + O(m) \times (\text{time for decrease_key})$

concrete DS	extract_min	decrease_key	overall time
heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci heap	$O(\log n)$	O(1)	$O(n\log n + m)$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Lemma (u, v) is in MST, if and only if there exists a cut $(U, V \setminus U)$, such that (u, v) is the lightest edge between U and $V \setminus U$.

(c, f) is in MST because of cut ({a, b, c, i}, V \ {a, b, c, i})
(i, g) is not in MST because no such cut exists

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

- $e \in MST \leftrightarrow$ there is a cut in which e is the lightest edge
- $e \notin MST \leftrightarrow$ there is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- $\bullet\,$ There is a cut in which e is the lightest edge
- There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

Single Source Shortest Paths Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

• DAG = directed acyclic graph U = undirected D = directed• SS = single source AP = all pairs

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

s-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

s-*t* Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

Single Source Shortest Paths Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: shortest paths from s to all other vertices $v \in V$

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

• We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: (directed or undirected) graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve *s*-*t* shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Single Source Shortest Paths Input: directed graph G = (V, E), $s \in V$ $w : E \to \mathbb{R}_{\geq 0}$ Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree $d[v], v \in V \setminus s$: the length of shortest path from s to v

 $\bullet\,$ An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow$ vertex from which v is visited
- 4: $d[v] \leftarrow \text{index of the level containing } v$

• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

• An edge of weight w(u,v) is equivalent to a pah of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS virtually

3:
$$\pi[v] \leftarrow$$
 vertex from which v is visited

- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

1:
$$S \leftarrow \{s\}, d(s) \leftarrow 0$$

2: while
$$|S| \leq n$$
 do

3: find a
$$v \notin S$$
 that minimizes $\min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}$

$$4: \qquad S \leftarrow S \cup \{v\}$$

5:
$$d[v] \leftarrow \min_{u \in S:(u,v) \in E} \{ d[u] + w(u,v) \}$$

Outline

Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm

Single Source Shortest Paths Dijkstra's Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

$\mathsf{Dijkstra}(G, w, s)$

- 1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 2: while $S \neq V$ do
- 3: $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]$
- 4: add u to S
- 5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do

6: **if**
$$d[u] + w(u, v) < d[v]$$
 then

7:
$$d[v] \leftarrow d[u] + w(u, v)$$

8:
$$\pi[v] \leftarrow u$$

9: return (d, π)

$\mathsf{Dijkstra}(G, w, s)$

- 1: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 2: while $S \neq V$ do
- 3: $u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]$
- 4: add u to S
- 5: for each $v \in V \setminus S$ such that $(u, v) \in E$ do

6: **if**
$$d[u] + w(u, v) < d[v]$$
 then

7:
$$d[v] \leftarrow d[u] + w(u, v)$$

8: $\pi[v] \leftarrow u$

9: return (d, π)

• Running time = $O(n^2)$

Improved Running Time using Priority Queue

$\mathsf{Dijkstra}(G, w, s)$

1: 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d[v])4: while $S \neq V$ do $u \leftarrow Q.\mathsf{extract_min}()$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if d[u] + w(u, v) < d[v] then 8: $d[v] \leftarrow d[u] + w(u, v), Q.\mathsf{decrease_key}(v, d[v])$ 9: $\pi[v] \leftarrow u$ 10:

11: return (π, d)

Recall: Prim's Algorithm for MST

$\mathsf{MST-Prim}(G, w)$

1: $s \leftarrow \text{arbitrary vertex in } G$ 2: $S \leftarrow \emptyset, d(s) \leftarrow 0$ and $d[v] \leftarrow \infty$ for every $v \in V \setminus \{s\}$ 3: $Q \leftarrow \text{empty queue, for each } v \in V$: Q.insert(v, d[v])4: while $S \neq V$ do $u \leftarrow Q.\mathsf{extract_min}()$ 5: $S \leftarrow S \cup \{u\}$ 6: for each $v \in V \setminus S$ such that $(u, v) \in E$ do 7: if w(u, v) < d[v] then 8: $d[v] \leftarrow w(u, v), Q.\mathsf{decrease_key}(v, d[v])$ 9: $\pi[v] \leftarrow u$ 10: 11: return $\{(u, \pi[u]) | u \in V \setminus \{s\}\}$

Running time:

 $O(n) \times (\text{time for extract}_min) + O(m) \times (\text{time for decrease}_key)$

Priority-Queue	extract_min	decrease_key	Time
Heap	$O(\log n)$	$O(\log n)$	$O(m \log n)$
Fibonacci Heap	$O(\log n)$	O(1)	$O(n\log n + m)$