Exercise: Scheduling Problem with Min Weighted Completion Time

Scheduling Problem

Input: Given are n jobs each $i \in[n]$ has a weight (or the importance) w_{i} and the length (or the time required) l_{i}. We define the completion time c_{i} of job i to be the sum of the lengths of jobs in the ordering up to and including l_{i}.
Output: An ordering of jobs that minimizes the weighted sum of completion times $\sum_{i \in[n]} w_{i} c_{i}$.

- Example: Given are 5 jobs with the following weights and lengths:

	1	2	3	4	5
weight	2	6	5	4	2
length	5	4	10	8	3

CSE 431/531: Algorithm Analysis and Design (Fall 2023) Divide-and-Conquer

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo

Outline

(1) Divide-and-Conquer
(2) Counting Inversions
(3) Quicksort and Selection

- Quicksort
- Lower Bound for Comparison-Based Sorting Algorithms
- Selection Problem
(4) Polynomial Multiplication
(5) Other Classic Algorithms using Divide-and-Conquer
- Solving Recurrences
(7) Computing n-th Fibonacci Number

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Greedy Algorithm

- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer

- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time

Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

Divide-and-Conquer

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- Combine: Combine solutions to small instances to obtain a solution for the original big instance

Running time analysis

- recursive programs: recurrence

merge-sort (A, n)

1: if $n=1$ then
2: return A
3: else
4: $\quad B \leftarrow$ merge-sort $(A[1 . .\lfloor n / 2\rfloor],\lfloor n / 2\rfloor)$
5: $\quad C \leftarrow$ merge-sort $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: return merge $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$

merge-sort (A, n)

1: if $n=1$ then
2: return A
3: else
4: $\quad B \leftarrow$ merge-sort $(A[1 . .\lfloor n / 2\rfloor],\lfloor n / 2\rfloor)$
5: $\quad C \leftarrow$ merge-sort $(A[\lfloor n / 2\rfloor+1 . . n],\lceil n / 2\rceil)$
6: return merge $(B, C,\lfloor n / 2\rfloor,\lceil n / 2\rceil)$

- Divide: trivial
- Conquer: 4, 5
- Combine: 6

merge-sort()

8	5	3	4	1	7	2	6

merge-sort()

Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $=O(n \lg n)$
- Better than insertion sort

Running Time for Merge-Sort

Implementation

- Divide $A[a, b]$ by $q=\lfloor(a+b) / 2\rfloor: A[a, q]$ and $A[q+1, b]$; or $A[a, q-1]$ and $A[q, b]$?

Running Time for Merge-Sort

Implementation

- Divide $A[a, b]$ by $q=\lfloor(a+b) / 2\rfloor: A[a, q]$ and $A[q+1, b]$; or $A[a, q-1]$ and $A[q, b]$?
- Speed-up: avoid the constant copying from one layer to another and backward

Running Time for Merge-Sort

Implementation

- Divide $A[a, b]$ by $q=\lfloor(a+b) / 2\rfloor: A[a, q]$ and $A[q+1, b]$; or $A[a, q-1]$ and $A[q, b]$?
- Speed-up: avoid the constant copying from one layer to another and backward
- Speed-up: stop the dividing process when the sequence sizes fall below constant

