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Computing Fn : Stupid Divide-and-Conquer
Algorithm

Fib(n)
1: if n = 0 return 0
2: if n = 1 return 1
3: return Fib(n� 1) + Fib(n� 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?

A: Exponential

Running time is at least ⌦(Fn)

Fn is exponential in n
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Computing Fn: Reasonable Algorithm

Fib(n)
1: F [0] 0
2: F [1] 1
3: for i 2 to n do

4: F [i] F [i� 1] + F [i� 2]

5: return F [n]

Dynamic Programming

Running time = ?
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Computing Fn: Even Better Algorithm

✓
Fn

Fn�1

◆
=

✓
1 1
1 0

◆✓
Fn�1

Fn�2

◆

✓
Fn

Fn�1

◆
=

✓
1 1
1 0

◆2 ✓
Fn�2

Fn�3

◆

· · ·
✓

Fn

Fn�1

◆
=

✓
1 1
1 0

◆n�1 ✓
F1

F0

◆
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power(n)

1: if n = 0 then return

✓
1 0
0 1

◆

2: R power(bn/2c)
3: R R⇥R

4: if n is odd then R R⇥
✓

1 1
1 0

◆

5: return R

Fib(n)
1: if n = 0 then return 0
2: M  power(n� 1)
3: return M [1][1]

Recurrence for running time?

T (n) = T (n/2) +O(1)

T (n) = O(lg n)
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Running time = O(lg n): We Cheated!

Q: How many bits do we need to represent F (n)?

A: ⇥(n)

We can not add (or multiply) two integers of ⇥(n) bits in O(1)
time

Even printing F (n) requires time much larger than O(lg n)

Fixing the Problem
To compute Fn, we need O(lg n) basic arithmetic operations on
integers
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Summary: Divide-and-Conquer

Divide: Divide instance into many smaller instances

Conquer: Solve each of smaller instances recursively and
separately

Combine: Combine solutions to small instances to obtain a
solution for the original big instance

Write down recurrence for running time

Solve recurrence using master theorem
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Summary: Divide-and-Conquer

Merge sort, quicksort, count-inversions, closest pair, · · · :
T (n) = 2T (n/2) +O(n)) T (n) = O(n lg n)

Integer Multiplication:
T (n) = 3T (n/2) +O(n)) T (n) = O(nlg2 3)

Matrix Multiplication:
T (n) = 7T (n/2) +O(n2)) T (n) = O(nlg2 7)

To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...
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Paradigms for Designing Algorithms

Greedy algorithm
Make a greedy choice

Prove that the greedy choice is safe

Reduce the problem to a sub-problem and solve it iteratively

Usually for optimization problems

Divide-and-conquer
Break a problem into many independent sub-problems

Solve each sub-problem separately

Combine solutions for sub-problems to form a solution for the
original one

Usually used to design more e�cient algorithms
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Paradigms for Designing Algorithms

Dynamic Programming
Break up a problem into many overlapping sub-problems

Build solutions for larger and larger sub-problems

Use a table to store solutions for sub-problems for reuse



4/80

Recall: Computing the n-th Fibonacci Number

F0 = 0, F1 = 1

Fn = Fn�1 + Fn�2, 8n � 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, · · ·

Fib(n)
1: F [0] 0
2: F [1] 1
3: for i 2 to n do

4: F [i] F [i� 1] + F [i� 2]

5: return F [n]

Store each F [i] for future use.
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Outline

1 Weighted Interval Scheduling

2 Subset Sum Problem

3 Knapsack Problem

4 Longest Common Subsequence
Longest Common Subsequence in Linear Space

5 Shortest Paths in Directed Acyclic Graphs

6 Matrix Chain Multiplication

7 Optimum Binary Search Tree

8 Summary
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Recall: Interval Schduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-size subset of mutually compatible jobs

0 1 2 3 4 5 6 7 8 9

Optimum value = 220
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Weighted Interval Scheduling
Input: n jobs, job i with start time si and finish time fi

each job has a weight (or value) vi > 0

i and j are compatible if [si, fi) and [sj, fj) are disjoint

Output: a maximum-weight subset of mutually compatible jobs
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Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule?

Job with the earliest finish time?

No, we are ignoring weights

Job with the largest weight?

No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
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Job with the largest weight? No, we are ignoring times

Job with the largest
weight

length
?

No, when weights are equal, this is the shortest job
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Designing a Dynamic Programming Algorithm

Sort jobs according to non-decreasing order
of finish times

opt[i]: optimal value for instance only
containing jobs {1, 2, · · · , i}

i opt[i]
0

0

1

80

2

100

3

100

4

105

5

150

6

170

7

185

8

220

9

220
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