Computing F}, : Stupid Divide-and-Conquer

Algorithm

Fib(n)
1: if n =0 return O

2. if n=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?
o
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@ Running time is at least Q(F},)



Computing F}, : Stupid Divide-and-Conquer

Algorithm

Fib(n)
1: if n =0 return O

2. if n=1return 1
3: return Fib(n — 1) + Fib(n — 2)

Q: Is the running time of the algorithm polynomial or exponential in
n?
o

A: Exponential |

@ Running time is at least Q(F},)

e [, is exponential in n



Computing F},: Reasonable Algorithm

1: F[0] <0

2: F[l] —1

3: for i + 2 ton do

4 F[i] + F[i — 1]+ F[i — 2]
5. return F'[n]

@ Dynamic Programming
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Computing F},: Reasonable Algorithm

1. F[0] <0

2: F[l](—l

3: for i < 2 ton do

4 F[i] + F[i— 1]+ F[i — 2]
5

: return F[n]

Dynamic Programming
Running time = O(n)



Computing F},: Even Better Algorithm



power(n)

. 1 0
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2: R < power(|n/2])
3: R« RxR
4 if nis odd then B « R x ( 1 é)
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Fib(n)
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2: M < power(n — 1)
3: return M[1][1]
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power(n)

) 10
1: if n = 0 then return 01
2: R < power(|n/2])
3: R« RxR
4: if nis odd then R + R X ( 1 (1)>
5. return R )
Fib(n)

1: if n =0 then return 0
2: M < power(n — 1)
3: return M[1][1]

@ Recurrence for running time? 7'(n) = T'(n/2) + O(1)
e T'(n) =0(lgn)
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Running time = O(Ign): We Cheated!

Q: How many bits do we need to represent F'(n)?

A: O(n)

@ We can not add (or multiply) two integers of ©(n) bits in O(1)
time

@ Even printing F'(n) requires time much larger than O(lgn)

Fixing the Problem

To compute F,,, we need O(lgn) basic arithmetic operations on
integers




Summary: Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance



Summary: Divide-and-Conquer

@ Divide: Divide instance into many smaller instances

@ Conquer: Solve each of smaller instances recursively and
separately

@ Combine: Combine solutions to small instances to obtain a
solution for the original big instance

@ Write down recurrence for running time

@ Solve recurrence using master theorem
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Summary: Divide-and-Conquer

@ Merge sort, quicksort, count-inversions, closest pair, - - -:
T(n) =2T(n/2)+ O(n) = T(n) = O(nlgn)

o Integer Multiplication:
T(n) =3T(n/2) + O(n) = T(n) = O(n's23)

@ Matrix Multiplication:
T(n) =7T(n/2) + O(n?) = T(n) = O(n's27)

@ To improve running time, design better algorithm for “combine”
step, or reduce number of recursions, ...
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Paradigms for Designing Algorithms

Greedy algorithm

o Make a greedy choice

@ Prove that the greedy choice is safe

@ Reduce the problem to a sub-problem and solve it iteratively
°

Usually for optimization problems

Divide-and-conquer
@ Break a problem into many independent sub-problems
@ Solve each sub-problem separately

@ Combine solutions for sub-problems to form a solution for the
original one

@ Usually used to design more efficient algorithms




Paradigms for Designing Algorithms

Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse




Recall: Computing the n-th Fibonacci Number

(] FO = 0, F1 =1
(] Fn = Fn,1 + Fn,Q,Vn > 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34,55,89, - --

1. F[0] <0

2: F[l] — 1

3: for i < 2 ton do

4 F[i] + F[i — 1]+ F[i — 2]
5: return F'[n]




Recall: Computing the n-th Fibonacci Number

(] F() = 0, F1 =1
(] Fn = Fn,1 + Fn,Q,Vn > 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34,55,89, - --

1. F[0] <0

2: F[l] — 1

3: for i < 2 ton do

4 F[i] + F[i — 1]+ F[i — 2]
5: return F'[n]

@ Store each Fi] for future use.



@ Weighted Interval Scheduling
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Weighted Interval Scheduling
Input: n jobs, job 7 with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-weight subset of mutually compatible jobs
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Weighted Interval Scheduling
Input: n jobs, job 7 with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-weight subset of mutually compatible jobs
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Optimum value = 220
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Hard to Design a Greedy Algorithm

Q: Which job is safe to schedule? J

@ Job with the earliest finish time? No, we are ignoring weights

@ Job with the largest weight? No, we are ignoring times

ight
@ Job with the largest \lxve|g ?

ength
No, when weights are equal, this is the shortest job
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@ Sort jobs according to non-decreasing order
of finish times



Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}



Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}
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Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}
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Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}
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Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}
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Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order
of finish times

@ optli]: optimal value for instance only
containing jobs {1,2,--- i}
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Designing a Dynamic Programming Algorithm
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@ Sort jobs according to non-decreasing order 6| 170
of finish times 71 185

@ optli]: optimal value for instance only 8| 220
containing jobs {1,2,--- i} 9] 220




