dynamic-programming (G, w, s)

```
1: f^0[s] \leftarrow 0 and f^0[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: \operatorname{copy} f^{\ell-1} \to f^{\ell}

4: for each (u,v) \in E do

5: if f^{\ell-1}[u] + w(u,v) < f^{\ell}[v] then

6: f^{\ell}[v] \leftarrow f^{\ell-1}[u] + w(u,v)

7: return (f^{n-1}[v])_{v \in V}
```

Obs. Assuming there are no negative cycles, then a shortest path contains at most n-1 edges

Proof.

If there is a path containing at least n edges, then it contains a cycle. Removing the cycle gives a path with the same or smaller length. \square

```
dynamic-programming (G, w, s)
  1: f^{\text{old}}[s] \leftarrow 0 and f^{\text{old}}[v] \leftarrow \infty for any v \in V \setminus \{s\}
  2: for \ell \leftarrow 1 to n-1 do
          copy f^{\mathsf{old}} \to f^{\mathsf{new}}
  3:
     for each (u,v) \in E do
  4:
                  if f^{\text{old}}[u] + w(u,v) < f^{\text{new}}[v] then
  5:
                        f^{\mathsf{new}}[v] \leftarrow f^{\mathsf{old}}[u] + w(u,v)
  6:
            copy f^{\text{new}} \rightarrow f^{\text{old}}
  7:
  8: return f<sup>old</sup>
```

• f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors

```
dynamic-programming (G, w, s)
  1: f^{\text{old}}[s] \leftarrow 0 and f^{\text{old}}[v] \leftarrow \infty for any v \in V \setminus \{s\}
  2: for \ell \leftarrow 1 to n-1 do
        \mathsf{copv}\ f^\mathsf{old} 	o f^\mathsf{new}
  3:
     for each (u,v) \in E do
  4:
                  if f^{\text{old}}[u] + w(u,v) < f^{\text{new}}[v] then
  5:
                        f^{\text{new}}[v] \leftarrow f^{\text{old}}[u] + w(u,v)
  6:
            copy f^{\text{new}} \rightarrow f^{\text{old}}
  7:
  8: return f^{\text{old}}
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
dynamic-programming (G, w, s)
 1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
 2: for \ell \leftarrow 1 to n-1 do
    copv f \rightarrow f
 3:
 4: for each (u, v) \in E do
             if f[u] + w(u,v) < f[v] then
 5:
                 f[v] \leftarrow f[u] + w(u,v)
 6:
       copy f \to f
 7:
 8: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
\begin{array}{l} \text{dynamic-programming}(G,w,s) \\ \text{1: } f[s] \leftarrow 0 \text{ and } f[v] \leftarrow \infty \text{ for any } v \in V \setminus \{s\} \\ \text{2: } \textbf{for } \ell \leftarrow 1 \text{ to } n-1 \text{ do} \\ \text{3: } \textbf{for } \text{ each } (u,v) \in E \text{ do} \\ \text{4: } \textbf{if } f[u] + w(u,v) < f[v] \text{ then} \\ \text{5: } f[v] \leftarrow f[u] + w(u,v) \\ \text{6: } \textbf{return } f \end{array}
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- f^{ℓ} only depends on $f^{\ell-1}$: only need 2 vectors
- only need 1 vector!

```
Bellman-Ford(G, w, s)
```

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

• Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration

Bellman-Ford(G, w, s)

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!

Bellman-Ford(G, w, s)

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n-1 do

3: for each (u,v) \in E do

4: if f[u] + w(u,v) < f[v] then

5: f[v] \leftarrow f[u] + w(u,v)

6: return f
```

- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges

Bellman-Ford(G, w, s)

- 1: $f[s] \leftarrow 0$ and $f[v] \leftarrow \infty$ for any $v \in V \setminus \{s\}$
- 2: **for** $\ell \leftarrow 1$ to n-1 **do**
- 3: **for** each $(u, v) \in E$ **do**
- 4: **if** f[u] + w(u, v) < f[v] **then**
- 5: $f[v] \leftarrow f[u] + w(u, v)$
- 6: **return** *f*
- Issue: when we compute f[u] + w(u, v), f[u] may be changed since the end of last iteration
- This is OK: it can only "accelerate" the process!
- After iteration ℓ , f[v] is at most the length of the shortest path from s to v that uses at most ℓ edges
- ullet f[v] is always the length of some path from s to v

• After iteration ℓ :

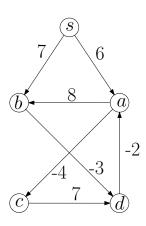
```
length of shortest s\text{-}v path
```

$$\leq f[v]$$

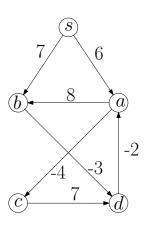
 \leq length of shortest $s ext{-}v$ path using at most ℓ edges

- Assuming there are no negative cycles:
 - length of shortest s-v path
 - = length of shortest s-v path using at most n-1 edges
- So, assuming there are no negative cycles, after iteration n-1:

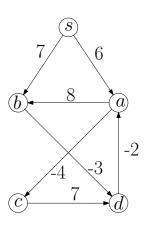
$$f[v] = \text{length of shortest } s\text{-}v \text{ path}$$



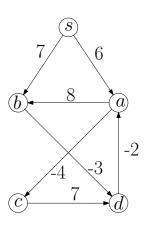
vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	∞	∞	∞	∞



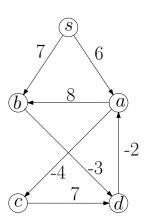
vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	∞	∞	∞	∞



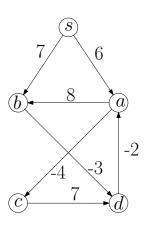
vertices	s	a	b	c	d
\overline{f}	0	6	∞	∞	∞



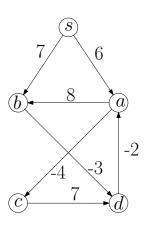
vertices	s	a	b	c	d
\overline{f}	0	6	∞	∞	∞



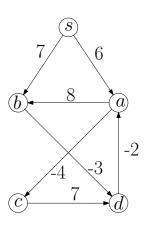
vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞



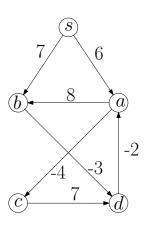
vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞



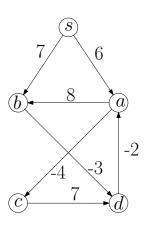
vertices	s	a	b	c	d
\overline{f}	0	6	7	∞	∞



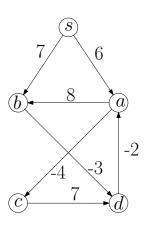
vertices	s	a	b	c	d
\overline{f}	0	6	7	2	∞



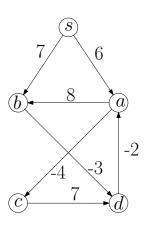
vertices	s	a	b	c	d
\overline{f}	0	6	7	2	∞



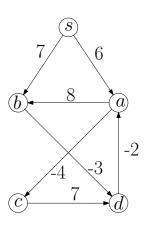
vertices	s	a	b	c	d
\overline{f}	0	6	7	2	4



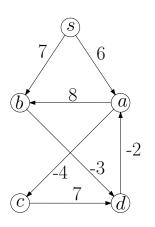
vertices	s	a	b	c	d
\overline{f}	0	6	7	2	4



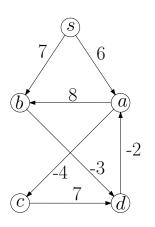
vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	6	7	2	4



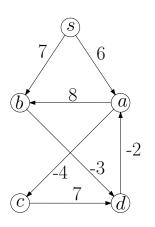
vertices	s	$\mid a \mid$	b	c	d
\overline{f}	0	2	7	2	4



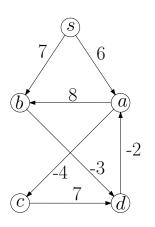
vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4



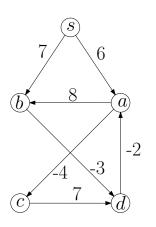
vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4



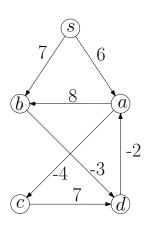
vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4



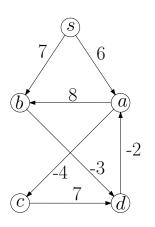
vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4



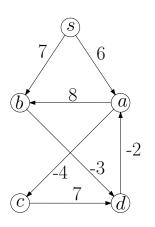
vertices	s	a	b	c	d
\overline{f}	0	2	7	2	4



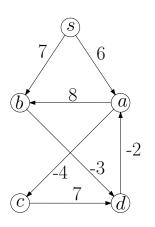
vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4



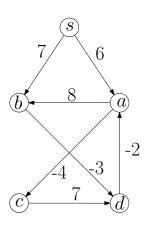
vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4



vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

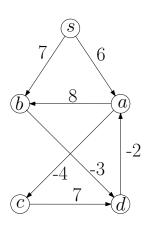


vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4



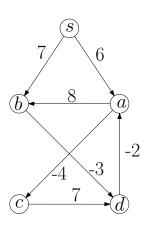
vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4



vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4



vertices	s	a	b	c	d
\overline{f}	0	2	7	-2	4

- end of iteration 1: 0, 2, 7, 2, 4
- end of iteration 2: 0, 2, 7, -2, 4
- end of iteration 3: 0, 2, 7, -2, 4
- Algorithm terminates in 3 iterations, instead of 4.

Bellman-Ford Algorithm

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
2: for \ell \leftarrow 1 to n do
       updated \leftarrow false
3:
       for each (u, v) \in E do
4:
            if f[u] + w(u,v) < f[v] then
5:
                 f[v] \leftarrow f[u] + w(u,v)
6:
                 updated \leftarrow true
7:
        if not updated, then return f
8:
9: output "negative cycle exists"
```

Bellman-Ford Algorithm

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}

2: for \ell \leftarrow 1 to n do

3: updated \leftarrow \text{false}

4: for each (u,v) \in E do

5: if f[u] + w(u,v) < f[v] then

6: f[v] \leftarrow f[u] + w(u,v), \pi[v] \leftarrow u

7: updated \leftarrow \text{true}

8: if not updated, then return f

9: output "negative cycle exists"
```

• $\pi[v]$: the parent of v in the shortest path tree

Bellman-Ford Algorithm

$\mathsf{Bellman}\text{-}\mathsf{Ford}(G,w,s)$

```
1: f[s] \leftarrow 0 and f[v] \leftarrow \infty for any v \in V \setminus \{s\}
2: for \ell \leftarrow 1 to n do
        updated \leftarrow false
3:
        for each (u,v) \in E do
4:
             if f[u] + w(u, v) < f[v] then
5:
                 f[v] \leftarrow f[u] + w(u,v), \, \pi[v] \leftarrow u
6:
                 updated \leftarrow true
7:
8:
        if not updated, then return f
9: output "negative cycle exists"
```

- $\pi[v]$: the parent of v in the shortest path tree
- Running time = O(nm)

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

1: for every starting point $s \in V$ do

2: run Bellman-Ford(G, w, s)

All-Pair Shortest Paths

All Pair Shortest Paths

Input: directed graph G = (V, E),

 $w: E \to \mathbb{R}$ (can be negative)

Output: shortest path from u to v for every $u, v \in V$

- 1: for every starting point $s \in V$ do
- 2: run Bellman-Ford(G, w, s)
- Running time = $O(n^2m)$

Summary of Shortest Path Algorithms we learned

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- ullet SS = single source AP = all pairs

• It is convenient to assume $V = \{1, 2, 3, \dots, n\}$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

ullet First try: f[i,j] is length of shortest path from i to j

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s

- It is convenient to assume $V = \{1, 2, 3, \dots, n\}$
- ullet For simplicity, extend the w values to non-edges:

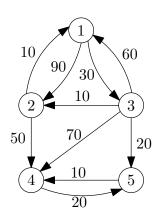
$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

- ullet First try: f[i,j] is length of shortest path from i to j
- ullet Issue: do not know in which order we compute f[i,j]'s
- $f^k[i,j]$: length of shortest path from i to j that only uses vertices $\{1,2,3,\cdots,k\}$ as intermediate vertices

Example for Definition of $f^k[i,j]$'s



$$f^{0}[1, 4] = \infty$$

$$f^{1}[1, 4] = \infty$$

$$f^{2}[1, 4] = 140 \qquad (1 \to 2 \to 4)$$

$$f^{3}[1, 4] = 90 \qquad (1 \to 3 \to 2 \to 4)$$

$$f^{4}[1, 4] = 90 \qquad (1 \to 3 \to 2 \to 4)$$

$$f^{5}[1, 4] = 60 \qquad (1 \to 3 \to 5 \to 4)$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0 \\ k = 1, 2, \dots, n \end{cases}$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \end{cases}$$

$$k = 1, 2, \dots, n$$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min & \end{cases}$$
 $k = 1, 2, \dots, n$

$$w(i,j) = \begin{cases} 0 & i = j \\ \text{weight of edge } (i,j) & i \neq j, (i,j) \in E \\ \infty & i \neq j, (i,j) \notin E \end{cases}$$

$$f^{k}[i,j] = \begin{cases} w(i,j) & k = 0\\ \min \begin{cases} f^{k-1}[i,j] & k = 1, 2, \dots, n \end{cases} \end{cases}$$

Floyd-Warshall(G, w)

```
1: f^0 \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{k-1} \to f^k

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{k-1}[i,k] + f^{k-1}[k,j] < f^k[i,j] then

7: f^k[i,j] \leftarrow f^{k-1}[i,k] + f^{k-1}[k,j]
```

```
1: f^{\text{old}} \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{\text{old}} \rightarrow f^{\text{new}}

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j] then

7: f^{\text{new}}[i,j] \leftarrow f^{\text{old}}[k,k] + f^{\text{old}}[k,k]
```

```
1: f^{\text{old}} \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f^{\text{old}} \to f^{\text{new}}

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f^{\text{old}}[i,k] + f^{\text{old}}[k,j] < f^{\text{new}}[i,j] then

7: f^{\text{new}}[i,j] \leftarrow f^{\text{old}}[i,k] + f^{\text{old}}[k,j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: \operatorname{copy} f \to f

4: for i \leftarrow 1 to n do

5: for j \leftarrow 1 to n do

6: if f[i,k] + f[k,j] < f[i,j] then

7: f[i,j] \leftarrow f[i,k] + f[k,j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j \in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

```
1: f \leftarrow w

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

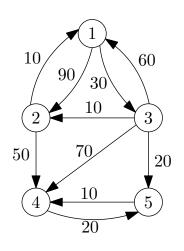
4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

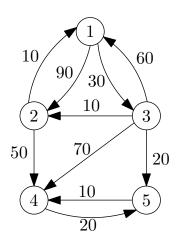
6: f[i,j] \leftarrow f[i,k] + f[k,j]
```

Lemma Assume there are no negative cycles in G. After iteration k, for $i,j\in V$, f[i,j] is exactly the length of shortest path from i to j that only uses vertices in $\{1,2,3,\cdots,k\}$ as intermediate vertices.

• Running time = $O(n^3)$.

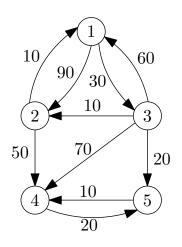


	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0



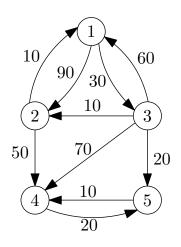
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	∞	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 2, k = 1, j = 3



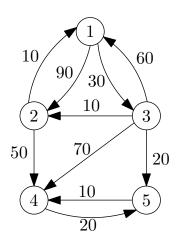
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 2, k = 1, j = 3



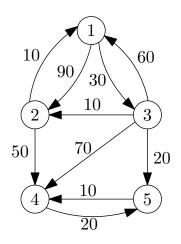
	1	2	3	4	5
1	0	90	30	∞	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 2, j = 4



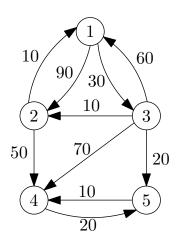
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 2, j = 4



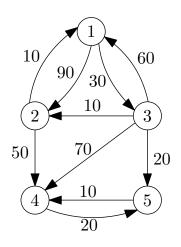
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	60	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

 \bullet i = 3, k = 2, j = 1,



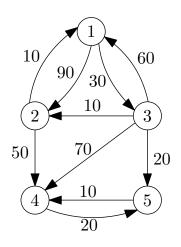
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 3, k = 2, j = 1,



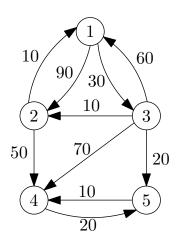
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	70	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 3, k = 2, j = 4



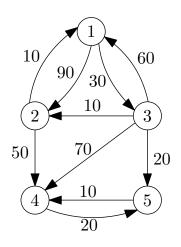
	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 3, k = 2, j = 4



	1	2	3	4	5
1	0	90	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 3, j = 2



	1	2	3	4	5
1	0	40	30	140	∞
2	10	0	40	50	∞
3	20	10	0	60	20
4	∞	∞	∞	0	20
5	∞	∞	∞	10	0

• i = 1, k = 3, j = 2

Recovering Shortest Paths

Floyd-Warshall(G, w)

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

Recovering Shortest Paths

$\mathsf{Floyd} ext{-}\mathsf{Warshall}(G,w)$

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

print-path(i, j)

```
1: if \pi[i,j] = \bot then then
2: if i \neq j then print(i,",")
3: else
```

3: **eise**

4: print-path $(i, \pi[i, j])$, print-path $(\pi[i, j], j)$

Detecting Negative Cycles

```
1: f \leftarrow w, \pi[i,j] \leftarrow \bot for every i,j \in V

2: for k \leftarrow 1 to n do

3: for i \leftarrow 1 to n do

4: for j \leftarrow 1 to n do

5: if f[i,k] + f[k,j] < f[i,j] then

6: f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
```

Detecting Negative Cycles

```
1: f \leftarrow w, \pi[i, j] \leftarrow \bot for every i, j \in V
 2: for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
 3:
              for i \leftarrow 1 to n do
 4:
                   if f[i, k] + f[k, j] < f[i, j] then
 5:
                        f[i,j] \leftarrow f[i,k] + f[k,j], \pi[i,j] \leftarrow k
 6:
 7: for k \leftarrow 1 to n do
         for i \leftarrow 1 to n do
 8:
 9:
              for i \leftarrow 1 to n do
                   if f[i, k] + f[k, j] < f[i, j] then
10:
                        report "negative cycle exists" and exit
11:
```