
71/88

dynamic-programming(G,w, s)

1: f 0[s] 0 and f
0[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
`�1 ! f

`

4: for each (u, v) 2 E do

5: if f
`�1[u] + w(u, v) < f

`[v] then
6: f

`[v] f
`�1[u] + w(u, v)

7: return (fn�1[v])v2V

Obs. Assuming there are no negative cycles, then a shortest path
contains at most n� 1 edges

Proof.
If there is a path containing at least n edges, then it contains a cycle.
Removing the cycle gives a path with the same or smaller length.

72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)

1: f old[s] 0 and f
old[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
old ! f

new

4: for each (u, v) 2 E do

5: if f
old[u] + w(u, v) < f

new[v] then
6: f

new[v] f
old[u] + w(u, v)

7: copy f
new ! f

old

8: return f
old

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!

72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)

1: f old[s] 0 and f
old[v] 1 for any v 2 V \ {s}

2: for ` 1 to n� 1 do

3: copy f
old ! f

new

4: for each (u, v) 2 E do

5: if f
old[u] + w(u, v) < f

new[v] then
6: f

new[v] f
old[u] + w(u, v)

7: copy f
new ! f

old

8: return f
old

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!

72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: copy f ! f

4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v)

7: copy f ! f

8: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!

72/88

Dynamic Programming with Better Space Usage

dynamic-programming(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!

72/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

f
` only depends on f

`�1: only need 2 vectors

only need 1 vector!

73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

73/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n� 1 do

3: for each (u, v) 2 E do

4: if f [u] + w(u, v) < f [v] then
5: f [v] f [u] + w(u, v)

6: return f

Issue: when we compute f [u] + w(u, v), f [u] may be changed
since the end of last iteration

This is OK: it can only “accelerate” the process!

After iteration `, f [v] is at most the length of the shortest path
from s to v that uses at most ` edges

f [v] is always the length of some path from s to v

74/88

Bellman-Ford Algorithm

After iteration `:

length of shortest s-v path

 f [v]

 length of shortest s-v path using at most ` edges

Assuming there are no negative cycles:

length of shortest s-v path

= length of shortest s-v path using at most n� 1 edges

So, assuming there are no negative cycles, after iteration n� 1:

f [v] = length of shortest s-v path

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 1 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 1 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 1 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 1 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 1

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 6 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

75/88

67

8

-2
-3-4

7

s

ab

c d

order in which we consider edges:
(s, a), (s, b), (a, b), (a, c), (b, d),
(c, d), (d, a)

vertices s a b c d

f 0 2 7 -2 4

end of iteration 1: 0, 2, 7, 2, 4

end of iteration 2: 0, 2, 7, -2, 4

end of iteration 3: 0, 2, 7, -2, 4

Algorithm terminates in 3 iterations,
instead of 4.

76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v)
7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)

76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v), ⇡[v] u

7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)

76/88

Bellman-Ford Algorithm

Bellman-Ford(G,w, s)
1: f [s] 0 and f [v] 1 for any v 2 V \ {s}
2: for ` 1 to n do

3: updated false
4: for each (u, v) 2 E do

5: if f [u] + w(u, v) < f [v] then
6: f [v] f [u] + w(u, v), ⇡[v] u

7: updated true

8: if not updated, then return f

9: output “negative cycle exists”

⇡[v]: the parent of v in the shortest path tree

Running time = O(nm)

77/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)

78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)

78/88

All-Pair Shortest Paths

All Pair Shortest Paths
Input: directed graph G = (V,E),

w : E ! R (can be negative)

Output: shortest path from u to v for every u, v 2 V

1: for every starting point s 2 V do

2: run Bellman-Ford(G,w, s)

Running time = O(n2
m)

79/88

Summary of Shortest Path Algorithms we learned

algorithm graph weights SS? running time

Simple DP DAG R SS O(n+m)
Dijkstra U/D R�0 SS O(n log n+m)

Bellman-Ford U/D R SS O(nm)
Floyd-Warshall U/D R AP O(n3)

DAG = directed acyclic graph U = undirected D = directed

SS = single source AP = all pairs

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}

For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm

First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

80/88

Design a Dynamic Programming Algorithm

It is convenient to assume V = {1, 2, 3, · · · , n}
For simplicity, extend the w values to non-edges:

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

For now assume there are no negative cycles

Cells for Floyd-Warshall Algorithm
First try: f [i, j] is length of shortest path from i to j

Issue: do not know in which order we compute f [i, j]’s

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

81/88

Example for Definition of fk[i, j]’s

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

f
0[1, 4] =1

f
1[1, 4] =1

f
2[1, 4] = 140 (1! 2! 4)

f
3[1, 4] = 90 (1! 3! 2! 4)

f
4[1, 4] = 90 (1! 3! 2! 4)

f
5[1, 4] = 60 (1! 3! 5! 4)

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j)

k = 0

min

(

f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j)

k = 0

min

(

f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j) k = 0

min

(

f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j) k = 0

min

(

f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j) k = 0

min

(
f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]

k = 1, 2, · · · , n

82/88

w(i, j) =

8
><

>:

0 i = j

weight of edge (i, j) i 6= j, (i, j) 2 E

1 i 6= j, (i, j) /2 E

f
k[i, j]: length of shortest path from i to j that only uses vertices

{1, 2, 3, · · · , k} as intermediate vertices

f
k[i, j] =

8
><

>:

w(i, j) k = 0

min

(
f
k�1[i, j]

f
k�1[i, k] + f

k�1[k, j]
k = 1, 2, · · · , n

83/88

Floyd-Warshall(G,w)

1: f 0 w

2: for k 1 to n do

3: copy f
k�1 ! f

k

4: for i 1 to n do

5: for j 1 to n do

6: if f
k�1[i, k] + f

k�1[k, j] < f
k[i, j] then

7: f
k[i, j] f

k�1[i, k] + f
k�1[k, j]

84/88

Floyd-Warshall(G,w)

1: f old w

2: for k 1 to n do

3: copy f
old ! f

new

4: for i 1 to n do

5: for j 1 to n do

6: if f
old[i, k] + f

old[k, j] < f
new[i, j] then

7: f
new[i, j] f

old[i, k] + f
old[k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

84/88

Floyd-Warshall(G,w)

1: f old w

2: for k 1 to n do

3: copy f
old ! f

new

4: for i 1 to n do

5: for j 1 to n do

6: if f
old[i, k] + f

old[k, j] < f
new[i, j] then

7: f
new[i, j] f

old[i, k] + f
old[k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

84/88

Floyd-Warshall(G,w)
1: f w

2: for k 1 to n do

3: copy f ! f

4: for i 1 to n do

5: for j 1 to n do

6: if f [i, k] + f [k, j] < f [i, j] then
7: f [i, j] f [i, k] + f [k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

84/88

Floyd-Warshall(G,w)
1: f w

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

84/88

Floyd-Warshall(G,w)
1: f w

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

84/88

Floyd-Warshall(G,w)
1: f w

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j]

Lemma Assume there are no negative cycles in G. After iteration k,
for i, j 2 V , f [i, j] is exactly the length of shortest path from i to j

that only uses vertices in {1, 2, 3, · · · , k} as intermediate vertices.

Running time = O(n3).

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 1 1
2 10 0 1 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 1 1
2 10 0 1 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 2, k = 1, j = 3

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 1 1
2 10 0 40 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 2, k = 1, j = 3

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 1 1
2 10 0 40 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 1, k = 2, j = 4

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 1, k = 2, j = 4

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 60 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 3, k = 2, j = 1,

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 20 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 3, k = 2, j = 1,

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 20 10 0 70 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 3, k = 2, j = 4

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 20 10 0 60 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 3, k = 2, j = 4

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 90 30 140 1
2 10 0 40 50 1
3 20 10 0 60 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 1, k = 3, j = 2

85/88

1

2 3

4 5

10
90

60
30

50 70
20

10

10

20

1 2 3 4 5
1 0 40 30 140 1
2 10 0 40 50 1
3 20 10 0 60 20
4 1 1 1 0 20
5 1 1 1 10 0

i = 1, k = 3, j = 2

86/88

Recovering Shortest Paths

Floyd-Warshall(G,w)
1: f w, ⇡[i, j] ? for every i, j 2 V

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

print-path(i, j)
1: if ⇡[i, j] = ? then then
2: if i 6= j then print(i,“,”)

3: else

4: print-path(i, ⇡[i, j]), print-path(⇡[i, j], j)

86/88

Recovering Shortest Paths

Floyd-Warshall(G,w)
1: f w, ⇡[i, j] ? for every i, j 2 V

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

print-path(i, j)
1: if ⇡[i, j] = ? then then
2: if i 6= j then print(i,“,”)

3: else

4: print-path(i, ⇡[i, j]), print-path(⇡[i, j], j)

87/88

Detecting Negative Cycles

Floyd-Warshall(G,w)
1: f w, ⇡[i, j] ? for every i, j 2 V

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

87/88

Detecting Negative Cycles

Floyd-Warshall(G,w)
1: f w, ⇡[i, j] ? for every i, j 2 V

2: for k 1 to n do

3: for i 1 to n do

4: for j 1 to n do

5: if f [i, k] + f [k, j] < f [i, j] then
6: f [i, j] f [i, k] + f [k, j], ⇡[i, j] k

7: for k 1 to n do

8: for i 1 to n do

9: for j 1 to n do

10: if f [i, k] + f [k, j] < f [i, j] then
11: report “negative cycle exists” and exit

