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Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall
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Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .
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Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.
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How to find a spanning tree?
BFS

DFS
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Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight
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Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm
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Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).
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Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST
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Is the Residual Problem Still a MST Problem?
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Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph
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Contraction of an Edge (u, v)
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⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)
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Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected
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