
CSE 431/531: Algorithm Analysis and Design (Fall 2023)

Graph Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo



2/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall



3/88

Spanning Tree

Def. Given a connected graph G = (V,E), a spanning tree
T = (V, F ) of G is a sub-graph of G that is a tree including all
vertices V .

a i

b

h g

c d

f

e



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



4/88

a i

b

h g

c d

f

e

Lemma Let T = (V, F ) be a subgraph of G = (V,E). The
following statements are equivalent:

T is a spanning tree of G;

T is acyclic and connected;

T is connected and has n� 1 edges;

T is acyclic and has n� 1 edges;

T is minimally connected: removal of any edge disconnects it;

T is maximally acyclic: addition of any edge creates a cycle;

T has a unique simple path between every pair of nodes.



5/88

How to find a spanning tree?
BFS

DFS



5/88

How to find a spanning tree?
BFS
DFS



6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight



6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight

a

b c

d

e

5

8 2

7

11

6

12



6/88

Minimum Spanning Tree (MST) Problem
Input: Graph G = (V,E) and edge weights w : E ! R

Output: the spanning tree T of G with the minimum total weight

a

b c

d

e

5

8 2

7

11

6

12



7/88

Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm



7/88

Recall: Steps of Designing A Greedy Algorithm
Design a “reasonable” strategy

Prove that the reasonable strategy is “safe” (key, usually done by
“exchanging argument”)

Show that the remaining task after applying the strategy is to
solve a (many) smaller instance(s) of the same problem (usually
trivial)

Def. A choice is “safe” if there is an optimum solution that is
“consistent” with the choice

Two Classic Greedy Algorithms for MST
Kruskal’s Algorithm

Prim’s Algorithm



8/88

Outline

1 Minimum Spanning Tree
Kruskal’s Algorithm
Reverse-Kruskal’s Algorithm
Prim’s Algorithm

2 Single Source Shortest Paths
Dijkstra’s Algorithm

3 Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall



9/88

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).



9/88

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.

Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST

lightest edge e⇤

u

v



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST

lightest edge e⇤

u

v



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST

lightest edge e⇤

u

v



10/88

Lemma It is safe to include the lightest edge: there is a minimum
spanning tree, that contains the lightest edge.

Proof.
Take a minimum spanning tree T

Assume the lightest edge e
⇤ is not in T

There is a unique path in T connecting u and v

Remove any edge e in the path to obtain tree T
0

w(e⇤)  w(e) =) w(T 0)  w(T ): T 0 is also a MST

lightest edge e⇤

u

v



11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph



11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph



11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph



11/88

Is the Residual Problem Still a MST Problem?

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Residual problem: find the minimum spanning tree that contains
edge (g, h)

Contract the edge (g, h)

Residual problem: find the minimum spanning tree in the
contracted graph



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



12/88

Contraction of an Edge (u, v)

a i

b

h g

c d

f

e

5

8 13

2

7

11

1

6

4

3

9

10

14

12
g
⇤

Remove u and v from the graph, and add a new vertex u
⇤

Remove all edges (u, v) from E

For every edge (u, w) 2 E,w 6= v, change it to (u⇤
, w)

For every edge (v, w) 2 E,w 6= u, change it to (u⇤
, w)

May create parallel edges! E.g. : two edges (i, g⇤)



13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected



13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected



13/88

Greedy Algorithm

Repeat the following step until G contains only one vertex:
1 Choose the lightest edge e

⇤, add e
⇤ to the spanning tree

2 Contract e⇤ and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u

and v formed by edges we selected


