CSE 431/531: Algorithm Analysis and Design (Fall 2023) Graph Algorithms

Lecturer: Kelin Luo
Department of Computer Science and Engineering
University at Buffalo

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Spanning Tree

Def. Given a connected graph $G=(V, E)$, a spanning tree $T=(V, F)$ of G is a sub-graph of G that is a tree including all vertices V.

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;
- T is acyclic and has $n-1$ edges;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;
- T is acyclic and has $n-1$ edges;
- T is minimally connected: removal of any edge disconnects it;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;
- T is acyclic and has $n-1$ edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;

Lemma Let $T=(V, F)$ be a subgraph of $G=(V, E)$. The following statements are equivalent:

- T is a spanning tree of G;
- T is acyclic and connected;
- T is connected and has $n-1$ edges;
- T is acyclic and has $n-1$ edges;
- T is minimally connected: removal of any edge disconnects it;
- T is maximally acyclic: addition of any edge creates a cycle;
- T has a unique simple path between every pair of nodes.
- How to find a spanning tree?
- BFS
- How to find a spanning tree?
- BFS
- DFS

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Minimum Spanning Tree (MST) Problem

Input: Graph $G=(V, E)$ and edge weights $w: E \rightarrow \mathbb{R}$
Output: the spanning tree T of G with the minimum total weight

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Recall: Steps of Designing A Greedy Algorithm

- Design a "reasonable" strategy
- Prove that the reasonable strategy is "safe" (key, usually done by "exchanging argument")
- Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually trivial)

Def. A choice is "safe" if there is an optimum solution that is "consistent" with the choice

Two Classic Greedy Algorithms for MST

- Kruskal's Algorithm
- Prim's Algorithm

Outline

(1) Minimum Spanning Tree

- Kruskal's Algorithm
- Reverse-Kruskal's Algorithm
- Prim's Algorithm
(2) Single Source Shortest Paths
- Dijkstra's Algorithm
(3) Shortest Paths in Graphs with Negative Weights

4 All-Pair Shortest Paths and Floyd-Warshall

Q: Which edge can be safely included in the MST?

Q: Which edge can be safely included in the MST?

A: The edge with the smallest weight (lightest edge).

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}

Lemma It is safe to include the lightest edge: there is a minimum spanning tree, that contains the lightest edge.

Proof.

- Take a minimum spanning tree T
- Assume the lightest edge e^{*} is not in T
- There is a unique path in T connecting u and v
- Remove any edge e in the path to obtain tree T^{\prime}
- $w\left(e^{*}\right) \leq w(e) \Longrightarrow w\left(T^{\prime}\right) \leq w(T): T^{\prime}$ is also a MST

Is the Residual Problem Still a MST Problem?

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)
- Contract the edge (g, h)

Is the Residual Problem Still a MST Problem?

- Residual problem: find the minimum spanning tree that contains edge (g, h)
- Contract the edge (g, h)
- Residual problem: find the minimum spanning tree in the contracted graph

Contraction of an Edge (u, v)

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$
- For every edge $(v, w) \in E, w \neq u$, change it to $\left(u^{*}, w\right)$

Contraction of an Edge (u, v)

- Remove u and v from the graph, and add a new vertex u^{*}
- Remove all edges (u, v) from E
- For every edge $(u, w) \in E, w \neq v$, change it to $\left(u^{*}, w\right)$
- For every edge $(v, w) \in E, w \neq u$, change it to $\left(u^{*}, w\right)$
- May create parallel edges! E.g. : two edges $\left(i, g^{*}\right)$

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Q: What edges are removed due to contractions?

Greedy Algorithm

Repeat the following step until G contains only one vertex:
(1) Choose the lightest edge e^{*}, add e^{*} to the spanning tree
(2) Contract e^{*} and update G be the contracted graph

Q: What edges are removed due to contractions?

A: Edge (u, v) is removed if and only if there is a path connecting u and v formed by edges we selected

