Box Packing

Input: n boxes of capacities $c_{1}, c_{2}, \cdots, c_{n}$
m items of sizes $s_{1}, s_{2}, \cdots, s_{m}$
Can put at most 1 item in a box
Item j can be put into box i if $s_{j} \leq c_{i}$
Output: A way to put as many items as possible in the boxes.

Box Packing

Input: n boxes of capacities $c_{1}, c_{2}, \cdots, c_{n}$
m items of sizes $s_{1}, s_{2}, \cdots, s_{m}$
Can put at most 1 item in a box
Item j can be put into box i if $s_{j} \leq c_{i}$
Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, $40,25,15,12$
- Item sizes: $45,42,20,19,16$
- Can put 3 items in boxes: $45 \rightarrow 60,20 \rightarrow 40,19 \rightarrow 25$

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1 . Which item should we put in box 1 ?

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1 . Which item should we put in box 1 ?
- A: The item of the largest size that can be put into the box.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
- formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j=$ largest item that box 1 can hold.

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j=$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j=$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S :

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j=$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S :

- $s_{j^{\prime}} \leq s_{j}$, and swapping gives another solution S^{\prime}

Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j=$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S :
box 1

- $s_{j^{\prime}} \leq s_{j}$, and swapping gives another solution S^{\prime}
- S^{\prime} is also an optimum solution. In S^{\prime}, j is put into Box 1 .
- Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.
- Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: we decided to put Item j into Box 1 , and the remaining instance is obtained by removing Item j and Box 1 .

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: $T \leftarrow\{1,2,3, \cdots, m\}$
2: for $i \leftarrow 1$ to n do
3: if some item in T can be put into box i then
4: $\quad j \leftarrow$ the largest item in T that can be put into box i
5: $\quad \operatorname{print}($ "put item j in box i ")
6: $\quad T \leftarrow T \backslash\{j\}$

Why "Safety" + "Self-reduce" \Longrightarrow Optimality?

- Let $\mathrm{BP}(B, T)$ denote a box-packing instance.
- $\phi(1,2, \ldots, m) \mapsto\{1,2, \ldots, n$, NULL $\}$ denote packing strategy. e.g., $\phi(2)=3$ means item 2 is put into box 3 .
- $\operatorname{val}(\phi):=$ the number of items packed by ϕ.
- ϕ_{g} : the packing strategy obtained by greedy algorithm.

Proof.

- Base case: When $|B|=1$ or $|T|=1$.
- Inductive case: (Hypothesis) Assume Greedy alg solves $\mathrm{BP}\left(B^{\prime}, T^{\prime}\right)$ optimally for $\left|B^{\prime}\right|=n-1$ and $\left|T^{\prime}\right|=m-1$.

Why "Safety" + "Self-reduce" \Longrightarrow Optimality?

Proof.

- (Induction) Wlog, let π be the optimal solution matches our greedy sol on $\mathrm{BP}(B, T)$, saying $\pi(j)=1$.
- By self-reduce: $\mathrm{BP}(B \backslash\{1\}, T \backslash\{j\})$ is a smaller BP instance.
- π and ϕ_{g} onto $\mathrm{BP}(B \backslash\{1\}, T \backslash\{j\})$, denoted as π^{\prime} and ϕ_{g}^{\prime}.
- By Inductive hypothesis, ϕ_{g}^{\prime} is the optimal sol for $\mathrm{BP}(B \backslash\{1\}, T \backslash\{j\})$.
- $\operatorname{val}(\pi) \geq \operatorname{val}\left(\phi_{g}\right)=1+\operatorname{val}\left(\phi_{g}^{\prime}\right) \geq 1+\operatorname{val}\left(\pi^{\prime}\right)=\operatorname{val}(\pi)$.

Running time

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: $T \leftarrow\{1,2,3, \cdots, m\}$
2: for $i \leftarrow 1$ to n do
3: \quad if some item in T can be put into box i then
4: $\quad j \leftarrow$ the largest item in T that can be put into box i
5: print("put item j in box i ")
6: $\quad T \leftarrow T \backslash\{j\}$

Running time

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: $T \leftarrow\{1,2,3, \cdots, m\}$
2: for $i \leftarrow 1$ to n do
3: \quad if some item in T can be put into box i then
4: $\quad j \leftarrow$ the largest item in T that can be put into box i
5: $\quad \operatorname{print}(" p u t$ item j in box i ")
6: $\quad T \leftarrow T \backslash\{j\}$

Running time

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing

1: $T \leftarrow\{1,2,3, \cdots, m\}$
2: for $i \leftarrow 1$ to n do
3: if some item in T can be put into box i then
4: $\quad j \leftarrow$ the largest item in T that can be put into box i
5: $\quad \operatorname{print}(" p u t$ item j in box i ")
6: $\quad T \leftarrow T \backslash\{j\}$

- With sorted item-sizes and box-capacities, running time is $O(\max \{n, m\})$.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy stretegy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is "safe" if there is always an optimum solution that is "consistent" with the decision made according to the strategy.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S^{\prime} that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S^{\prime} that is consistent with the choice.
- The procedure is not a part of the algorithm.

Outline

(1) Toy Example: Box Packing

(2) Interval Scheduling
(3) Offline Caching

- Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code
(5) Summary

Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i} i and j are compatible if $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right)$ are disjoint Output: A maximum-size subset of mutually compatible jobs

Interval Scheduling

Input: n jobs, job i with start time s_{i} and finish time f_{i} i and j are compatible if $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right)$ are disjoint Output: A maximum-size subset of mutually compatible jobs

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size?

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time?

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S

[^0]\square
\square
\square
\square

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done

\square

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
S :

\square
j : \square

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S^{\prime}.
S :

\square
j :

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S^{\prime}.

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem?

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j ?
- Is it another instance of interval scheduling problem? Yes!

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)
1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset
$$

2: while $A \neq \emptyset$ do

3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

$$
\text { 1: } A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset
$$

2: while $A \neq \emptyset$ do

3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$
5: return S

Greedy Algorithm for Interval Scheduling

Schedule (s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$

5: return S

Running time of algorithm?

Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1: $A \leftarrow\{1,2, \cdots, n\}, S \leftarrow \emptyset$
2: while $A \neq \emptyset$ do
3: $\quad j \leftarrow \arg \min _{j^{\prime} \in A} f_{j^{\prime}}$
4: $\quad S \leftarrow S \cup\{j\} ; A \leftarrow\left\{j^{\prime} \in A: s_{j^{\prime}} \geq f_{j}\right\}$

5: return S

Running time of algorithm?

- Naive implementation: $O\left(n^{2}\right)$ time

[^0]: S :

