Box Packing

Input: n boxes of capacities c_1, c_2, \dots, c_n m items of sizes s_1, s_2, \dots, s_m Can put at most 1 item in a box Item j can be put into box i if $s_j \le c_i$ **Output:** A way to put as many items as possible in the boxes.

Box Packing

Input: *n* boxes of capacities c_1, c_2, \dots, c_n *m* items of sizes s_1, s_2, \dots, s_m Can put at most 1 item in a box Item *j* can be put into box *i* if $s_j \le c_i$ Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 15, 12
- Item sizes: 45, 42, 20, 19, 16
- Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25$

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

• Q: Take box 1. Which item should we put in box 1?

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

• Intuition: putting the item gives us the easiest residual problem.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
- formal proof via exchanging argument:

Proof.

• Let j =largest item that box 1 can hold.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in S:

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in $S{:}$

• $s_{j'} \leq s_j$, and swapping gives another solution S'

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- \bullet Otherwise, assume this is what happens in S:

s_{j'} ≤ s_j, and swapping gives another solution S'
S' is also an optimum solution. In S', j is put into Box 1.

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: we decided to put Item *j* into Box 1, and the remaining instance is obtained by removing Item *j* and Box 1.

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Why "Safety" + "Self-reduce" \implies Optimality?

- Let BP(B,T) denote a box-packing instance.
- $\phi(1, 2, ..., m) \mapsto \{1, 2, ..., n, \text{NULL}\}$ denote packing strategy. e.g., $\phi(2) = 3$ means item 2 is put into box 3.
- $val(\phi) :=$ the number of items packed by ϕ .
- ϕ_g : the packing strategy obtained by greedy algorithm.

- Base case: When |B| = 1 or |T| = 1.
- Inductive case: (Hypothesis) Assume Greedy alg solves BP(B',T') optimally for |B'| = n 1 and |T'| = m 1.

Why "Safety" + "Self-reduce" \implies Optimality?

- (Induction) Wlog, let π be the optimal solution matches our greedy sol on BP(B,T), saying $\pi(j) = 1$.
- By self-reduce: $\mathsf{BP}(B \setminus \{1\}, T \setminus \{j\})$ is a smaller BP instance.
- π and ϕ_g onto $\mathsf{BP}(B \setminus \{1\}, T \setminus \{j\})$, denoted as π' and ϕ'_g .
- By Inductive hypothesis, ϕ_g' is the optimal sol for ${\rm BP}(B\setminus\{1\},T\setminus\{j\}).$
- $\bullet \ \operatorname{val}(\pi) \geq \operatorname{val}(\phi_g) = 1 + \operatorname{val}(\phi_g') \geq 1 + \operatorname{val}(\pi') = \operatorname{val}(\pi).$

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Running time

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$

Running time

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

1:
$$T \leftarrow \{1, 2, 3, \cdots, m\}$$

- 2: for $i \leftarrow 1$ to n do
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow \text{the largest item in } T \text{ that can be put into box } i$
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$
- With sorted item-sizes and box-capacities, running time is $O(\max\{n,m\}).$

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

• Greedy strategy is safe: we will not miss the optimum solution

- 1: while the instance is non-trivial do
- 2: make the choice using the greedy strategy
- 3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy stretegy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is "safe" if there is always an optimum solution that is "consistent" with the decision made according to the strategy.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- $\bullet\,$ if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.

Exchange argument: Proof of Safety of a Strategy

- let S be an arbitrary optimum solution.
- $\bullet\,$ if S is consistent with the greedy choice, done.
- otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
- The procedure is not a part of the algorithm.

Outline

Toy Example: Box Packing

Interval Scheduling

Offline Caching Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code

5 Summary

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs

• Which of the following strategies are safe?

- Which of the following strategies are safe?
- Schedule the job with the smallest size?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time?

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time? Yes!

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

• Take an arbitrary optimum solution ${\cal S}$

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- Take an arbitrary optimum solution ${\cal S}$
- If it contains j, done

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- Take an arbitrary optimum solution ${\cal S}$
- If it contains j, done

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- $\bullet\,$ Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- $\bullet\,$ Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem?

- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval scheduling problem? Yes!

- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval scheduling problem? Yes!

- What is the remaining task after we decided to schedule *j*?
- Is it another instance of interval scheduling problem? Yes!

$\mathsf{Schedule}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg \min_{j' \in A} f_{j'}$$

4:
$$S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$$

$$\mathsf{Schedule}(s, f, n)$$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg\min_{j' \in A} f_{j'}$$

4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

$$\mathsf{Schedule}(s, f, n)$$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg\min_{j' \in A} f_{j'}$$

4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

$$\mathsf{Schedule}(s, f, n)$$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg\min_{j' \in A} f_{j'}$$

4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

$$\mathsf{Schedule}(s, f, n)$$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg\min_{j' \in A} f_{j'}$$

4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

$$\mathsf{Schedule}(s, f, n)$$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg\min_{j' \in A} f_{j'}$$

4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$

$\mathsf{Schedule}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg \min_{j' \in A} f_{j'}$$

4:
$$S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$$

5: return S

Running time of algorithm?

$\mathsf{Schedule}(s, f, n)$

1:
$$A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$$

2: while $A \neq \emptyset$ do

3:
$$j \leftarrow \arg \min_{j' \in A} f_{j'}$$

4:
$$S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$$

5: return S

Running time of algorithm?

• Naive implementation: $O(n^2)$ time