Heap

The following heap property is satisfied:

• for any two nodes i, j such that i is the parent of j, we have $key[A[i]] \le key[A[j]].$

A heap. Numbers in the circles denote key values of elements.

68/97

68/97

	h
$insert(v, key_value)$	
1: $s \leftarrow s + 1$	
2: $A[s] \leftarrow v$	
3: $p[v] \leftarrow s$	
4: $key[v] \leftarrow key_value$	
5: heapify_up (s)	

70/97

70/97

70/97

70/97

$extract_min()$ 1: $ret \leftarrow A[1]$ 2: $A[1] \leftarrow A[s]$ 3: $p[A[1]] \leftarrow 1$ 4: $s \leftarrow s - 1$ 5: **if** s > 1 **then** 6: heapify_down(1)7: return ret decrease_key (v, key_val) 1: $key[v] \leftarrow key_value$ 2: heapify-up(p[v])

heapify-down(i)

1: while 2i < s do if 2i = s or 2: $key[A[2i]] \le key[A[2i+1]]$ then $i \leftarrow 2i$ 3: else 4: $i \leftarrow 2i + 1$ 5: if key[A[j]] < key[A[i]] then 6: swap A[i] and A[j]7: $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$ 8: $i \leftarrow j$ 9: else break 10:

• Running time of heapify_up and heapify_down: $O(\lg n)$

- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$

- $\bullet\,$ Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$

data structures	insert	extract_min	decrease_key
array	O(1)	O(n)	O(1)
sorted array	O(n)	O(1)	O(n)
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Two Definitions Needed to Prove that the Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too big if we can decrease key[A[i]] to make H a heap.

Outline

Toy Example: Box Packing

- Interval Scheduling
 Interval Partitioning
- Offline Caching
 Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- 5 Summary
- 6 Exercise Problems

Encoding Letters Using Bits

- 8 letters a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per letter

$deacfg \rightarrow 011100000010101110$

Q: Can we have a better encoding scheme?

• Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

Q: If some letters appear more frequently than the others, can we have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient.

Idea

• using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme? a: 0 b: 1 c: 00

Q: What is the issue with the following encoding scheme? a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c.

Q: What is the issue with the following encoding scheme? a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to aa or c.

Solution

Use prefix codes to guarantee a unique decoding.

Def. A prefix code for a set S of letters is a function $\gamma : S \to \{0, 1\}^*$ such that for two distinct $x, y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

Def. A prefix code for a set S of letters is a function $\gamma : S \to \{0, 1\}^*$ such that for two distinct $x, y \in S$, $\gamma(x)$ is not a prefix of $\gamma(y)$.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

	a	b	c	d
0	01	0000	0001	100
	e	f	g	h

• Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h

• 0001001100000001011110100001001

• Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

• 0001/00110000001011110100001001

• C

a	b	c	d
001	0000	0001	100
	£		1
е	J	g	n

- 0001/001/100000001011110100001001
- ca

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/000001011110100001001
- cad

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01011110100001001
- cadb

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/011110100001001
- cadbh

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/1110100001001
- cadbhh

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/10100001001
- cadbhhe

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001001
- cadbhhef

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001/001
- cadbhhef<mark>c</mark>

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001/001/
- cadbhhefca

Rooted binary tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	

scheme 1

scheme 3

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total = 89
scheme 2 length	1	3	3	3	3	total = 87
scheme 3 length	1	4	4	3	2	total = 84

scheme 1

scheme 3

• Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

- Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)
- Q: What types of decisions should we make?
- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm
- A: We can choose two letters and make them brothers in the tree.

Which Two Letters Can Be Safely Put Together As Brothers?

• Focus on the "structure" of the optimum encoding tree

