Heap

The following heap property is satisfied:

- for any two nodes i, j such that i is the parent of j, we have $\operatorname{key}[A[i]] \leq \operatorname{key}[A[j]]$.

A heap. Numbers in the circles denote key values of elements.

insert(v, key_value)

insert(v, key_value)

$$
\text { 1: } s \leftarrow s+1
$$

2: $A[s] \leftarrow v$
3: $p[v] \leftarrow s$
4: $k e y[v] \leftarrow k e y_{-} v a l u e$
5: heapify_up (s)
heapify-up (i)
1: while $i>1$ do
2: $\quad j \leftarrow\lfloor i / 2\rfloor$
if $\operatorname{key}[A[i]]<\operatorname{key}[A[j]]$ then swap $A[i]$ and $A[j]$
$p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$
$i \leftarrow j$
else break

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

extract_min()

1: $r e t \leftarrow A[1]$
2: $A[1] \leftarrow A[s]$
3: $p[A[1]] \leftarrow 1$
4: $s \leftarrow s-1$
5: if $s \geq 1$ then
6: heapify_down(1)
7: return ret
decrease_key $(v$, key_val 1: $k e y[v] \leftarrow$ key_value 2: heapify-up $(p[v])$
heapify-down (i)
1: while $2 i \leq s$ do
2: \quad if $2 i=s$ or $\operatorname{key}[A[2 i]] \leq \operatorname{key}[A[2 i+1]]$ then
3: $\quad j \leftarrow 2 i$
4: else

$$
j \leftarrow 2 i+1
$$

if $\operatorname{key}[A[j]]<\operatorname{key}[A[i]]$ then swap $A[i]$ and $A[j]$ $p[A[i]] \leftarrow i, p[A[j]] \leftarrow j$ $i \leftarrow j$
else break

- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$
- Running time of heapify_up and heapify_down: $O(\lg n)$
- Running time of insert, exact_min and decrease_key: $O(\lg n)$

data structures	insert	extract_min	decrease_key
array	$O(1)$	$O(n)$	$O(1)$
sorted array	$O(n)$	$O(1)$	$O(n)$
heap	$O(\lg n)$	$O(\lg n)$	$O(\lg n)$

Two Definitions Needed to Prove that the Procedures Maintain

Def. We say that H is almost a heap except that key $[A[i]]$ is too small if we can increase $k e y[A[i]]$ to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too big if we can decrease key $[A[i]]$ to make H a heap.

Outline

(1) Toy Example: Box Packing
(2) Interval Scheduling

- Interval Partitioning
(3) Offline Caching
- Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Huffman Code
(5) Summary
(6) Exercise Problems

Encoding Letters Using Bits

- 8 letters a, b, c, d, e, f, g, h in a language
- need to encode a message using bits
- idea: use 3 bits per letter

a	b	c	d	e	f	g	h
000	001	010	011	100	101	110	111

$$
\text { deacfg } \rightarrow 011100000010101110
$$

Q: Can we have a better encoding scheme?

- Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

Q: If some letters appear more frequently than the others, can we have a better encoding scheme?

A: Using variable-length encoding scheme might be more efficient.
Idea

- using fewer bits for letters that are more frequently used, and more bits for letters that are less frequently used.

Q: What is the issue with the following encoding scheme?

- $\quad a: 0$
b: 1
c: 00

Q: What is the issue with the following encoding scheme?

- $\quad a: 0$
b: 1
c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to $a a$ or c.

Q: What is the issue with the following encoding scheme?

- $\quad a: 0$
b: 1
c: 00

A: Can not guarantee a unique decoding. For example, 00 can be decoded to $a a$ or c.

Solution

Use prefix codes to guarantee a unique decoding.

Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma: S \rightarrow\{0,1\}^{*}$ such that for two distinct $x, y \in S, \gamma(x)$ is not a prefix of $\gamma(y)$.

Prefix Codes

Def. A prefix code for a set S of letters is a function $\gamma: S \rightarrow\{0,1\}^{*}$ such that for two distinct $x, y \in S, \gamma(x)$ is not a prefix of $\gamma(y)$.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001001100000001011110100001001

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001100000001011110100001001
- C

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100000001011110100001001
- ca

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/000001011110100001001
- cad

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01011110100001001
- cadb

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/011110100001001
- cadbh

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/1110100001001
- cadbhh

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/10100001001
- cadbhhe

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001001
- cadbhhef

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001/001
- cadbhhefc

Prefix Codes Guarantee Unique Decoding

- Reason: there is only one way to cut the first code.

a	b	c	d
001	0000	0001	100
e	f	g	h
11	1010	1011	01

- 0001/001/100/0000/01/01/11/1010/0001/001/
- cadbhhefca

Properties of Encoding Tree

Properties of Encoding Tree

- Rooted binary tree

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Properties of Encoding Tree

- Rooted binary tree
- Left edges labelled 0 and right edges labelled 1
- A leaf corresponds to a code for some letter
- If coding scheme is not wasteful: a non-leaf has exactly two children

Best Prefix Codes

Input: frequencies of letters in a message
Output: prefix coding scheme with the shortest encoding for the message

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	

scheme 1

scheme 2

scheme 3

example

letters	a	b	c	d	e	
frequencies	18	3	4	6	10	
scheme 1 length	2	3	3	2	2	total $=89$
scheme 2 length	1	3	3	3	3	total $=87$
scheme 3 length	1	4	4	3	2	total $=84$

scheme 1
scheme 2
scheme 3

- Example Input: $(a: 18, b: 3, c: 4, d: 6, e: 10)$
- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10)$

Q: What types of decisions should we make?

- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10)$

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10)$

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10$)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10$)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm
- Example Input: ($a: 18, b: 3, c: 4, d: 6, e: 10$)

Q: What types of decisions should we make?

- Can we directly give a code for some letter?
- Hard to design a strategy; residual problem is complicated.
- Can we partition the letters into left and right sub-trees?
- Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

Which Two Letters Can Be Safely Put Together

 As Brothers?- Focus on the "structure" of the optimum encoding tree

