
67/97

Heap

The following heap property is satisfied:

for any two nodes i, j such that i is the parent of j, we have
key[A[i]]  key[A[j]].

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

17

19

A heap. Numbers in the circles denote key values of elements.

68/97

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

17

19

68/97

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 3

2

4

10

17

19

68/97

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16

2

4

10

3

19 17

68/97

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 17

2

4

3

10

19

68/97

insert(v, key value)

15

9

20 17

5

7

15 8

11

16 23

21 16 17

2

3

4

10

19

69/97

insert(v, key value)
1: s s+ 1
2: A[s] v
3: p[v] s
4: key[v] key value
5: heapify up(s)

heapify-up(i)
1: while i > 1 do

2: j bi/2c
3: if key[A[i]] < key[A[j]] then
4: swap A[i] and A[j]
5: p[A[i]] i, p[A[j]] j
6: i j
7: else break

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19 17

2

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

17

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

17

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

17

10

70/97

extract min()

15

9

20 17

5

7

15 8

11

16 23

21 16

3

4

10

19

173

174

17

17

10

71/97

extract min()
1: ret A[1]
2: A[1] A[s]
3: p[A[1]] 1
4: s s� 1
5: if s � 1 then

6: heapify down(1)

7: return ret

decrease key(v, key value)
1: key[v] key value
2: heapify-up(p[v])

heapify-down(i)
1: while 2i  s do

2: if 2i = s or
key[A[2i]]  key[A[2i+ 1]] then

3: j 2i
4: else

5: j 2i+ 1

6: if key[A[j]] < key[A[i]] then
7: swap A[i] and A[j]
8: p[A[i]] i, p[A[j]] j
9: i j
10: else break

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

72/97

Running time of heapify up and heapify down: O(lg n)

Running time of insert, exact min and decrease key: O(lg n)

data structures insert extract min decrease key

array O(1) O(n) O(1)
sorted array O(n) O(1) O(n)

heap O(lg n) O(lg n) O(lg n)

73/97

Two Definitions Needed to Prove that the
Procedures Maintain Heap Property

Def. We say that H is almost a heap except that key[A[i]] is too
small if we can increase key[A[i]] to make H a heap.

Def. We say that H is almost a heap except that key[A[i]] is too
big if we can decrease key[A[i]] to make H a heap.

74/97

Outline

1 Toy Example: Box Packing

2 Interval Scheduling
Interval Partitioning

3 O✏ine Caching
Heap: Concrete Data Structure for Priority Queue

4 Data Compression and Hu↵man Code

5 Summary

6 Exercise Problems

75/97

Encoding Letters Using Bits

8 letters a, b, c, d, e, f, g, h in a language

need to encode a message using bits

idea: use 3 bits per letter

a b c d e f g h
000 001 010 011 100 101 110 111

deacfg ! 011100000010101110

Q: Can we have a better encoding scheme?

Seems unlikely: must use 3 bits per letter

Q: What if some letters appear more frequently than the others?

76/97

Q: If some letters appear more frequently than the others, can we
have a better encoding scheme?

A: Using variable-length encoding scheme might be more e�cient.

Idea
using fewer bits for letters that are more frequently used, and
more bits for letters that are less frequently used.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

77/97

Q: What is the issue with the following encoding scheme?

a: 0 b: 1 c: 00

A: Can not guarantee a unique decoding. For example, 00 can be
decoded to aa or c.

Solution
Use prefix codes to guarantee a unique decoding.

78/97

Prefix Codes

Def. A prefix code for a set S of letters is a function � : S ! {0, 1}⇤
such that for two distinct x, y 2 S, �(x) is not a prefix of �(y).

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

78/97

Prefix Codes

Def. A prefix code for a set S of letters is a function � : S ! {0, 1}⇤
such that for two distinct x, y 2 S, �(x) is not a prefix of �(y).

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001001100000001011110100001001

cadbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001100000001011110100001001

c

adbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100000001011110100001001

ca

dbhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/000001011110100001001

cad

bhhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01011110100001001

cadb

hhefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/011110100001001

cadbh

hefca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/1110100001001

cadbhh

efca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/10100001001

cadbhhe

fca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001001

cadbhhef

ca

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001/001

cadbhhefc

a

79/97

Prefix Codes Guarantee Unique Decoding

Reason: there is only one way to cut the first code.

a b c d
001 0000 0001 100

e f g h
11 1010 1011 01

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

0001/001/100/0000/01/01/11/1010/0001/001/

cadbhhefca

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree

Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

80/97

0

0 1

1

b c

a

h

d

f

0 1

0 1

0 1

0 1

0 1

g

e

Properties of Encoding Tree
Rooted binary tree

Left edges labelled 0 and right
edges labelled 1

A leaf corresponds to a code
for some letter

If coding scheme is not
wasteful: a non-leaf has exactly
two children

Best Prefix Codes
Input: frequencies of letters in a message

Output: prefix coding scheme with the shortest encoding for the
message

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

81/97

example

letters a b c d e
frequencies 18 3 4 6 10

scheme 1 length 2 3 3 2 2 total = 89
scheme 2 length 1 3 3 3 3 total = 87
scheme 3 length 1 4 4 3 2 total = 84

a d e

b c b c d e

a

b c

d

e

a

scheme 1 scheme 2 scheme 3

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

82/97

Example Input: (a: 18, b: 3, c: 4, d: 6, e: 10)

Q: What types of decisions should we make?

Can we directly give a code for some letter?

Hard to design a strategy; residual problem is complicated.

Can we partition the letters into left and right sub-trees?

Not clear how to design the greedy algorithm

A: We can choose two letters and make them brothers in the tree.

83/97

Which Two Letters Can Be Safely Put Together
As Brothers?

Focus on the “structure” of the optimum encoding tree

There are two deepest leaves that are brothers

Lemma It is safe to make the two least frequent letters brothers.

