CSE 431/531: Algorithm Analysis and Design (Fall 2023)

NP-Completeness

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results? J

NP-Completeness Theory

@ The topics we discussed so far are positive results: how to design
efficient algorithms for solving a given problem.

@ NP-Completeness provides negative results: some problems can
not be solved efficiently.

Q: Why do we study negative results? J

@ A given problem X cannot be solved in polynomial time.

e Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our efforts are doomed!

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Efficient = Polynomial Time

@ Polynomial time: O(n*) for any constant k > 0
e Example: O(n),0(n?), O(n*logn), O(n'®)
e Not polynomial time: O(2"), O(n'°&™)

@ Almost all algorithms we learnt so far run in polynomial time

Reason for Efficient = Polynomial Time
e For natural problems, if there is an O(n*)-time algorithm, then k&
is small, say 4

@ A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time Q(2™) for some ¢

@ Do not need to worry about the computational model

@ Some Hard Problems

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C'in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C'in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)
Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

@ The graph is called the Petersen Graph. It has no HC.

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

@ Running time: O(n!m) = 20(lem
@ Better algorithm: 20

e Far away from polynomial time

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V, E)

Output: whether GG contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

@ Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 20(len)
Better algorithm: 20
Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V such that
no two vertices in [are adjacent in G. J

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V such that
no two vertices in [are adjacent in G. J

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V such that
no two vertices in [are adjacent in G. J

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of G

Maximum Independent Set Problem

Def. An independent set of G = (V, E) is a subset I C V such that
no two vertices in [are adjacent in G. J

Maximum Independent Set Problem
Input: graph G = (V, E)
Output: the size of the maximum independent set of G

@ Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \; A, = operators.

Output: whether the boolean formula is satisfiable

o Example: —((—xy A xa) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with \; A, = operators.

Output: whether the boolean formula is satisfiable

o Example: —((—xy A xa) V (mxy A —g) Vg V (mxe A x3)) is not
satisfiable

@ Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

@ Formula Satisfiablity is NP-hard

