
CSE 431/531: Algorithm Analysis and Design (Fall 2023)

NP-Completeness

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo



2/76

NP-Completeness Theory

The topics we discussed so far are positive results: how to design
e�cient algorithms for solving a given problem.

NP-Completeness provides negative results: some problems can
not be solved e�ciently.

Q: Why do we study negative results?

A given problem X cannot be solved in polynomial time.

Without knowing it, you will have to keep trying to find polynomial
time algorithm for solving X. All our e↵orts are doomed!
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E�cient = Polynomial Time

Polynomial time: O(nk) for any constant k > 0

Example: O(n), O(n2), O(n2.5 log n), O(n100)

Not polynomial time: O(2n), O(nlogn)

Almost all algorithms we learnt so far run in polynomial time

Reason for E�cient = Polynomial Time

For natural problems, if there is an O(nk)-time algorithm, then k

is small, say 4

A good cut separating problems: for most natural problems, either
we have a polynomial time algorithm, or the best algorithm runs
in time ⌦(2n

c
) for some c

Do not need to worry about the computational model
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Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary
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Example: Hamiltonian Cycle Problem

Def. Let G be an undirected graph. A Hamiltonian Cycle (HC) of
G is a cycle C in G that passes each vertex of G exactly once.

Hamiltonian Cycle (HC) Problem
Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle
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Example: Hamiltonian Cycle Problem

The graph is called the Petersen Graph. It has no HC.
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Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem
Input: graph G = (V,E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

Enumerate all possible permutations, and check if it corresponds
to a Hamiltonian Cycle

Running time: O(n!m) = 2O(n lgn)

Better algorithm: 2O(n)

Far away from polynomial time

HC is NP-hard: it is unlikely that it can be solved in polynomial
time.
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Maximum Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ✓ V such that
no two vertices in I are adjacent in G.

Maximum Independent Set Problem
Input: graph G = (V,E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard
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Formula Satisfiability

Formula Satisfiability
Input: boolean formula with n variables, with _,^,¬ operators.

Output: whether the boolean formula is satisfiable

Example: ¬((¬x1 ^ x2) _ (¬x1 ^ ¬x3) _ x1 _ (¬x2 ^ x3)) is not
satisfiable

Trivial algorithm: enumerate all possible assignments, and check if
each assignment satisfies the formula. The algorithm runs in
exponential time.

Formula Satisfiablity is NP-hard
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