2-Approximation Algorithm for Vertex Cover

VertexCover(G)

1. C«0

2: while £ # () do

3: select an edge (u,v) € E, C < C U{u,v}

4 Remove from E' every edge incident on either v or v
5

: return C)

@ Let the set C' and C* be the sets output by above algorithm and
an optimal alg, respectively. Let S be the set of edges selected.

@ Since no two edge in S are covered by the same vertex (Once an
edge is picked in line 3, all other edges that are incident on its
endpoints are removed from E in line 4), we have |C*| > |S|;

@ As we have added both vertices of edge (u,v), we get |C| = 2|5
but C* have to add one of the two, thus, |C|/|C*| < 2.

© Summary

@ We consider decision problems

@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time. J

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance J

Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t

o there is a polynomial function p such that, X (s) =1 if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.

The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier.)

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

o If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

Proof of NP-Completeness for Circuit-Sat

@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier

Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

v

Proof of NP-Completeness for other problems by reductions

