4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P C NP N Co-NP

NP = Co-NP

P = NP = Co-NP

@ People commonly believe we are in the 4th scenario

© Polynomial Time Reductions and NP-Completeness

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time.

J

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time. J

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time. J

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

()

G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t €V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t € V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

Obs. G has a HP from s to t if and only if graph on right side has a
HC. J

NP-Completeness

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

NP-Completeness

Def. A problem X is called NP-hard if

Q Y <p X forevery Y € NP.

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if

@ X € NP, and
Q Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP. J

@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

NP-Completeness

Def. A problem X is called NP-complete if

@ X € NP, and
Q Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP. J

@ NP-complete problems are the hardest problems in NP
@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)

e NP-Complete Problems

Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X for every Y € NP.

Def. A problem X is called NP-complete if
@ X € NP, and
Q Y <p X for every Y € NP.

@ How can we find a problem X & NP such that every problem Y €

NP is polynomial time reducible to X? Are we asking for too
much?

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

@ How can we find a problem X & NP such that every problem Y €
NP is polynomial time reducible to X? Are we asking for too
much?

@ No! There is indeed a large family of natural NP-complete
problems

The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

T1e
T e

>

Y Y

Circuit-Sat is NP-Complete

program data

@ key fact: algorithms can be converted .| |

to circuits
. . U
Fact Any algorithm that takes n bits as | ">
input and outputs 0/1 with running time S circuit, %
/ A EEERUNNNS

T'(n) can be converted into a circuit of e
size p(T'(n)) for some polynomial
function p(-).

Time T'

Circuit-Sat is NP-Complete

program data

@ key fact: algorithms can be converted .| |

to circuits
. . U
Fact Any algorithm that takes n bits as | ">
input and outputs 0/1 with running time S circuit, %
/ A EEERUNNNS

T'(n) can be converted into a circuit of e
size p(T'(n)) for some polynomial
function p(-).

Time T | [

@ Then, we can show that any problem Y € NP can be reduced to
Circuit-Sat.

@ We prove HC <p Circuit-Sat as an example.

HC <p Circuit-Sat

check-HC(G, S)

o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

HC <p Circuit-Sat

check-HC(G, S)

o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

e (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

HC <p Circuit-Sat

check-HC(G,S) —* c’

[TTTTTTT TTTTTTTT
G S
o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

e (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

@ Construct a circuit C’ for the algorithm check-HC

HC <p Circuit-Sat

check-HC(G, S) —* (o c

[TTTTTTT TTTTTTTT CITITTIT TTTTITTIT
G S 01001100 g
o Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

e (7 is a yes-instance if and only if there is an .S such that
check-HC(G, S) returns 1

@ Construct a circuit C’ for the algorithm check-HC
@ hard-wire the instance G to the circuit C’ to obtain the circuit C

HC <p Circuit-Sat

check-HC(G, S) —* (o c

[TTTTTTT TTTTTITTT
S

CTITITTT TTTTTTTIT
G 01001100 g

Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C’ to obtain the circuit C
(G is a yes-instance if and only if C' is satisfiable 3

Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y": check-Y(s,)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable n

Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y": check-Y(s,)
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable n

Theorem Circuit-Sat is NP-complete. J

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

3-CNF (conjunctive normal form) is a special case of formula:

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

o Literals: z; or —x;

3-CNF (conjunctive normal form) is a special case of formula:
@ Boolean variables: x1, 25, -+, 2,
o Literals: z; or —x;

e Clause: disjunction (“or") of at most 3 literals: x5V -4,
xl\/xg\/—'xg, _|[L‘2\/_|ZL‘5\/ZL‘7

3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

o Literals: z; or —x;

e Clause: disjunction (“or") of at most 3 literals: x5V -4,
xl\/xg\/—'xg, _|[L‘2\/_|ZL‘5\/ZL‘7

@ 3-CNF formula: conjunction (“and”) of clauses:
(IEI V) V _|IE3) A (.TQ V Z3 V I4) A (_15(31 V T3 V _|CL’4)

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses

@ To satisfy a clause, we need to satisfy at least 1 literal

3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment x; = 1,29 = 1,23 = 0,24 = 0 satisfies

(1 V —xe Vx3) A (22 Vg V) A(—mxy Vg V oxy)

Circuit-Sat <p 3-Sat

Z1
)

J Y ¢

x3>0*

Circuit-Sat <p 3-Sat

I)
)

>O@é > L9 10
T3 D@x‘* 73"]:7 r‘—/

@ Associate every wire with a new variable

Ty

xs

Circuit-Sat <p 3-Sat

Z1

)

e

xs

Ty Z10

W

=l

@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:

(x4 ="23) A (15 = 1 V 22) A (26 = TT4)
/\(ZL’7:ZE1/\{E2/\I4)/\(CL’8 21'5\/176)
/\(.Tg :.’176\/337)/\(5610 :xg/\xg/\a:7)/\x10

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1‘5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\ﬂf7)/\fU10

Convert each clause to a 3-CNF

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

=== =0 000
_H R, OORKRMKEOO
H O, OMFM OKF O
— O RFrRr ORFr OO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

=== =0 000
_H R, OORKRMKE OO
H O, OMFMOF O
HOROROO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

(x1 Vo V-xs) A

=== =0 000
_H R, OORKRMKE OO
H O, OMFMOF O
HOROROO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

8
ok
=
¥
8
ot

X5 <> 21V T2
1

Convert each clause to a 3-CNF

Ts =21 VIy <&

(x1 Vo V-xs) A

i i i e B e B e B @)
_H R, OORKRKMHEOO
H O, OMFM OKF O
O, ORKrR OO

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2
0 0 0 1
Ts =x1 VI & 0O 0 1 0
0 1 0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2
0 0 0 1
Ts =x1 VI & 0O 0 1 0
0 1 0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 0 1

Ts =x1 VI & 0O 0 1 0
0 1 0 0

(1 Vg V—oxs) A 0o 1 1 1

(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1

1 VI VI AN

(s Vi v s) 1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 0 1

Ts =x1 VI & 0O 0 1 0
0 1 0 0

(1 Vg V—oxs) A 0o 1 1 1

(.171 V —x9 V [)’)5) VAN 1 0 0 0
1 0 1 1

1 VI VI AN

(s Vi v s) 1 1 0 0
1 1 1 1

Circuit-Sat <p 3-Sat

(1‘4 = _|ZE3) VAN (1'5 =T V 1'2) VAN (LL‘G = _|I'4)
A(z7 =21 ANxa Ay) A (g = 25 V T6)

/\(.Tg:.T6V.277)/\<$10:.’Eg/\.Tg/\$7)/\fU10

Convert each clause to a 3-CNF T X2 X5 | Tp X1 VT2

0 0 O 1
Ts =x1 VI & 0O 0 1 0

0 1 o0 0
(1 Vg V—oxs) A 0o 1 1 1
(.171 V —x9 V [)’)5) VAN 1 0 0 0
(_h’El V To V %5) A 1 (]). é é
(_|ZL‘1 V o V 1’5) 1 1 1 1

Circuit-Sat <p 3-Sat

@ Circuit <= Formula < 3-CNF

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat

Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack

