4 Possibilities of Relationships

Notice that X € NP <= X € Co-NP and P C NP N Co-NP

NP = Co-NP

P = NP = Co-NP

@ People commonly believe we are in the 4th scenario




© Polynomial Time Reductions and NP-Completeness



Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.
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Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

To prove positive results:

Suppose Y <p X. If X can be solved in polynomial time, then Y
can be solved in polynomial time. J

To prove negative results:

Suppose Y <p X. If Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time. J
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s,t € V
Output: whether there is a Hamiltonian path from s to ¢t in G

Lemma HP <p HC. J

Obs. G has a HP from s to t if and only if graph on right side has a
HC. J
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NP-Completeness

Def. A problem X is called NP-complete if

@ X € NP, and
Q Y <p X forevery Y € NP.

Theorem If X is NP-complete and X € P, then P = NP. J

@ NP-complete problems are the hardest problems in NP
@ NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)



e NP-Complete Problems
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Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

@ How can we find a problem X & NP such that every problem Y €
NP is polynomial time reducible to X? Are we asking for too
much?

@ No! There is indeed a large family of natural NP-complete
problems



The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

T1e
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Circuit-Sat is NP-Complete

program data

@ key fact: algorithms can be converted .| |

to circuits
. . U
Fact Any algorithm that takes n bits as | ">
input and outputs 0/1 with running time S circuit, %
/ A EEERUNNNS

T'(n) can be converted into a circuit of e
size p(T'(n)) for some polynomial
function p(-).

Time T'




Circuit-Sat is NP-Complete

program data

@ key fact: algorithms can be converted .| |

to circuits
. . U
Fact Any algorithm that takes n bits as | ">
input and outputs 0/1 with running time S circuit, %
/ A EEERUNNNS

T'(n) can be converted into a circuit of e
size p(T'(n)) for some polynomial
function p(-).

Time T | [

@ Then, we can show that any problem Y € NP can be reduced to
Circuit-Sat.

@ We prove HC <p Circuit-Sat as an example.
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HC <p Circuit-Sat

check-HC(G, S) —* (o c

[TTTTTTT TTTTTITTT
S

CTITITTT TTTTTTTIT
G 01001100 g

Let check-HC(G, S) be the certifier for the Hamiltonian cycle
problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G, S) returns 1

Construct a circuit C’ for the algorithm check-HC
hard-wire the instance G to the circuit C’ to obtain the circuit C
(G is a yes-instance if and only if C' is satisfiable 3



Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y": check-Y(s, )
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@ s is a yes-instance if and only if there is a ¢ such that
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Y <p Circuit-Sat, For Every Y €NP

@ Let check-Y(s,t) be the certifier for problem Y": check-Y(s, )
returns 1 if ¢ is a valid certificate for s.

@ s is a yes-instance if and only if there is a ¢ such that
check-Y(s,t) returns 1

@ Construct a circuit C’ for the algorithm check-Y
@ hard-wire the instance s to the circuit C’ to obtain the circuit C

@ s is a yes-instance if and only if C' is satisfiable n

Theorem Circuit-Sat is NP-complete. J




Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack
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3-CNF (conjunctive normal form) is a special case of formula:

@ Boolean variables: x1, 25, -+, 2,

o Literals: z; or —x;

e Clause: disjunction (“or") of at most 3 literals: x5V -4,
xl\/xg\/—'xg, _|[L‘2\/_|ZL‘5\/ZL‘7

@ 3-CNF formula: conjunction (“and”) of clauses:
(IEI V ) V _|IE3) A (.TQ V Z3 V I4) A (_15(31 V T3 V _|CL’4)
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Output: whether the 3-CNF is satisfiable
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3-Sat
Input: a 3-CNF formula
Output: whether the 3-CNF is satisfiable

o To satisfy a 3-CNF, we need to satisfy all clauses
@ To satisfy a clause, we need to satisfy at least 1 literal
@ Assignment x; = 1,29 = 1,23 = 0,24 = 0 satisfies

(1 V —xe Vx3) A (22 Vg V) A(—mxy Vg V oxy)



Circuit-Sat <p 3-Sat
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Circuit-Sat <p 3-Sat
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@ Associate every wire with a new variable
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Circuit-Sat <p 3-Sat

Z1

)

e

xs

Ty Z10

W
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@ Associate every wire with a new variable

@ The circuit is equivalent to the following formula:

(x4 ="23) A (15 = 1 V 22) A (26 = TT4)
/\(ZL’7:ZE1/\{E2/\I4)/\(CL’8 21'5\/176)
/\(.Tg :.’176\/337)/\(5610 :xg/\xg/\a:7)/\x10
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Circuit-Sat <p 3-Sat

o Circuit <= Formula <= 3-CNF
@ The circuit is satisfiable if and only if the 3-CNF is satisfiable

@ The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

@ Thus, Circuit-Sat <p 3-Sat



Reductions of NP-Complete Problems

Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack




