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4 Possibilities of Relationships

Notice that X 2 NP () X 2 Co-NP and P ✓ NP \ Co-NP

P = NP = Co-NP
NP = Co-NP

P

NP Co-NPP = NP \ Co-NP
NP

Co-NP

NP \ Co-NP

P

People commonly believe we are in the 4th scenario
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Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

To prove positive results:

Suppose Y P X. If X can be solved in polynomial time, then Y

can be solved in polynomial time.

To prove negative results:

Suppose Y P X. If Y cannot be solved in polynomial time, then X

cannot be solved in polynomial time.
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Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem
Input: G = (V,E) and s, t 2 V

Output: whether there is a Hamiltonian path from s to t in G

Lemma HP P HC.

Obs. G has a HP from s to t if and only if graph on right side has a
HC.
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NP-Completeness

Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

Theorem If X is NP-complete and X 2 P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)
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NP-Completeness

Def. A problem X is called NP-hard if

1 X 2 NP, and

2 Y P X for every Y 2 NP.

Theorem If X is NP-complete and X 2 P, then P = NP.

NP-complete problems are the hardest problems in NP

NP-hard problems are at least as hard as NP-complete problems
(a NP-hard problem is not required to be in NP)
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Def. A problem X is called NP-complete if
1 X 2 NP, and
2 Y P X for every Y 2 NP.

How can we find a problem X 2 NP such that every problem Y 2
NP is polynomial time reducible to X? Are we asking for too
much?

No! There is indeed a large family of natural NP-complete
problems
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The First NP-Complete Problem: Circuit-Sat

Circuit Satisfiability (Circuit-Sat)
Input: a circuit

Output: whether the circuit is satisfiable

x1
x2

x3
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Circuit-Sat is NP-Complete

key fact: algorithms can be converted
to circuits

Fact Any algorithm that takes n bits as
input and outputs 0/1 with running time
T (n) can be converted into a circuit of
size p(T (n)) for some polynomial
function p(·).

program data

Time 1

Time 2

circuit

Time 2

circuit

Time T

Then, we can show that any problem Y 2 NP can be reduced to
Circuit-Sat.

We prove HC P Circuit-Sat as an example.
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HC P Circuit-Sat

check-HC(G,S)

Let check-HC(G,S) be the certifier for the Hamiltonian cycle
problem: check-HC(G,S) returns 1 if S is a Hamiltonian cycle is
G and 0 otherwise.

G is a yes-instance if and only if there is an S such that
check-HC(G,S) returns 1

Construct a circuit C 0 for the algorithm check-HC
hard-wire the instance G to the circuit C 0 to obtain the circuit C
G is a yes-instance if and only if C is satisfiable
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Y P Circuit-Sat, For Every Y 2NP

Let check-Y(s, t) be the certifier for problem Y : check-Y(s, t)
returns 1 if t is a valid certificate for s.

s is a yes-instance if and only if there is a t such that
check-Y(s, t) returns 1

Construct a circuit C 0 for the algorithm check-Y

hard-wire the instance s to the circuit C 0 to obtain the circuit C

s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique
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3-Sat

3-CNF (conjunctive normal form) is a special case of formula:

Boolean variables: x1, x2, · · · , xn

Literals: xi or ¬xi

Clause: disjunction (“or”) of at most 3 literals: x3 _ ¬x4,
x1 _ x8 _ ¬x9, ¬x2 _ ¬x5 _ x7

3-CNF formula: conjunction (“and”) of clauses:
(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ ¬x4)
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3-Sat

3-Sat
Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

To satisfy a 3-CNF, we need to satisfy all clauses

To satisfy a clause, we need to satisfy at least 1 literal

Assignment x1 = 1, x2 = 1, x3 = 0, x4 = 0 satisfies
(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ ¬x4)
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Circuit-Sat P 3-Sat

x1
x2

x3

Associate every wire with a new variable
The circuit is equivalent to the following formula:

(x4 = ¬x3) ^ (x5 = x1 _ x2) ^ (x6 = ¬x4)

^ (x7 = x1 ^ x2 ^ x4) ^ (x8 = x5 _ x6)

^ (x9 = x6 _ x7) ^ (x10 = x8 ^ x9 ^ x7) ^ x10
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Circuit-Sat P 3-Sat
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Convert each clause to a 3-CNF

x5 = x1 _ x2 ,

(x1 _ x2 _ ¬x5) ^
(x1 _ ¬x2 _ x5) ^
(¬x1 _ x2 _ x5) ^
(¬x1 _ ¬x2 _ x5)

x1 x2 x5 x5 $ x1 _ x2

0 0 0 1

0 0 1 0
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0 1 1 1
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Circuit-Sat P 3-Sat

Circuit () Formula () 3-CNF

The circuit is satisfiable if and only if the 3-CNF is satisfiable

The size of the 3-CNF formula is polynomial (indeed, linear) in
the size of the circuit

Thus, Circuit-Sat P 3-Sat
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Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique


