Notice that $X \in \mathsf{NP} \iff \overline{X} \in \mathsf{Co-NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co-NP}$

• People commonly believe we are in the 4th scenario

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

Def. A problem X is called NP-complete if

- $\ \ \, \mathbf{0} \ \ \, X \in \mathsf{NP}, \mathsf{ and}$
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.

Def. A problem X is called NP-hard if

 $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

• NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

 NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

• NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

- **Def.** A problem X is called NP-complete if
- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$

Theorem If X is NP-complete and $X \in P$, then P = NP.

- NP-complete problems are the hardest problems in NP
- NP-hard problems are at least as hard as NP-complete problems (a NP-hard problem is not required to be in NP)

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called NP-complete if • $X \in NP$, and • $Y \leq_P X$ for every $Y \in NP$.

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?

Def. A problem X is called NP-complete if

- $X \in \mathsf{NP}$, and
- $2 Y \leq_{\mathsf{P}} X \text{ for every } Y \in \mathsf{NP}.$
 - How can we find a problem X ∈ NP such that every problem Y ∈ NP is polynomial time reducible to X? Are we asking for too much?
 - No! There is indeed a large family of natural NP-complete problems

The First NP-Complete Problem: Circuit-Sat

Input: a circuit

Output: whether the circuit is satisfiable

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

Circuit-Sat is NP-Complete

• key fact: algorithms can be converted to circuits

Fact Any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.

- Then, we can show that any problem Y ∈ NP can be reduced to Circuit-Sat.
- We prove $HC \leq_P Circuit-Sat$ as an example.

 $\operatorname{check-HC}(G,S)$

• Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.

 $\operatorname{check-HC}(G,S)$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C' for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C

$\mathsf{HC} \leq_P \mathsf{Circuit-Sat}$

- Let check-HC(G, S) be the certifier for the Hamiltonian cycle problem: check-HC(G, S) returns 1 if S is a Hamiltonian cycle is G and 0 otherwise.
- G is a yes-instance if and only if there is an S such that ${\rm check-HC}(G,S)$ returns 1
- Construct a circuit C^\prime for the algorithm check-HC
- hard-wire the instance G to the circuit C' to obtain the circuit C
- G is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

$Y \leq_P \text{Circuit-Sat, For Every } Y \in \mathsf{NP}$

- Let check-Y(s,t) be the certifier for problem Y: check-Y(s,t) returns 1 if t is a valid certificate for s.
- s is a yes-instance if and only if there is a t such that ${\rm check-Y}(s,t)$ returns 1
- Construct a circuit C^\prime for the algorithm check-Y
- hard-wire the instance s to the circuit C' to obtain the circuit C
- s is a yes-instance if and only if C is satisfiable

Theorem Circuit-Sat is NP-complete.

Reductions of NP-Complete Problems

 $\operatorname{3-CNF}$ (conjunctive normal form) is a special case of formula:

• Boolean variables: x_1, x_2, \cdots, x_n

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$

- Boolean variables: x_1, x_2, \cdots, x_n
- Literals: x_i or $\neg x_i$
- Clause: disjunction ("or") of at most 3 literals: $x_3 \vee \neg x_4$, $x_1 \vee x_8 \vee \neg x_9$, $\neg x_2 \vee \neg x_5 \vee x_7$
- 3-CNF formula: conjunction ("and") of clauses: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

• To satisfy a 3-CNF, we need to satisfy all clauses

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal

Input: a 3-CNF formula

Output: whether the 3-CNF is satisfiable

- To satisfy a 3-CNF, we need to satisfy all clauses
- To satisfy a clause, we need to satisfy at least 1 literal
- Assignment $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$ satisfies $(x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

• Associate every wire with a new variable

- Associate every wire with a new variable
- The circuit is equivalent to the following formula:

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1
	0
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0
	0
	0

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
			45/7

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
· · ·	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	$egin{array}{c} x_1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{c c} x_1 & x_2 \\ \hline 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_5 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
·	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
, <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
× /	1	0	1	1
	1	1	0	0
	1	1	1	1

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1
	x_1 0 0 0 1 1 1 1 1	$\begin{array}{ccc} x_1 & x_2 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ \hline 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_5 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$

$$(x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
, <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg r_1 \lor / r_2 \lor / r_5) \land$	1	0	1	1
$(x_1 v x_2 v x_5)$	1	1	0	0
	1	1	1	1

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
, <u> </u>	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg r_1 \lor r_2 \lor r_5) \land$	1	0	1	1
$(x_1 \vee x_2 \vee x_5) \wedge (x_1 \vee x_2 \vee x_5)$	1	1	0	0
	1	1	1	1 45/
				TJ/

$$\begin{aligned} & (x_4 = \neg x_3) \land (x_5 = x_1 \lor x_2) \land (x_6 = \neg x_4) \\ & \land (x_7 = x_1 \land x_2 \land x_4) \land (x_8 = x_5 \lor x_6) \\ & \land (x_9 = x_6 \lor x_7) \land (x_{10} = x_8 \land x_9 \land x_7) \land x_{10} \end{aligned}$$

Convert each clause to a 3-CNF	x_1	x_2	x_5	$x_5 \leftrightarrow x_1 \lor x_2$
	0	0	0	1
$x_5 = x_1 \lor x_2 \Leftrightarrow$	0	0	1	0
	0	1	0	0
$(x_1 \lor x_2 \lor \neg x_5) \land$	0	1	1	1
$(x_1 \lor \neg x_2 \lor x_5) \land$	1	0	0	0
$(\neg r_1 \lor / r_2 \lor / r_5) \land$	1	0	1	1
$(x_1 \vee x_2 \vee x_5)$	1	1	0	0
$(\neg x_1 \lor \neg x_2 \lor x_5)$	1	1	1	1
				43/10

• Circuit \iff Formula \iff 3-CNF

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit

- Circuit \iff Formula \iff 3-CNF
- The circuit is satisfiable if and only if the 3-CNF is satisfiable
- The size of the 3-CNF formula is polynomial (indeed, linear) in the size of the circuit
- Thus, Circuit-Sat \leq_P 3-Sat

Reductions of NP-Complete Problems

