Optimum Binary Search Tree

@ nelementse; <ey <es3<---< ey,

@ ¢; has frequency f;

@ goal: build a binary search tree for {e;, ez, -+ ,e,} with the
minimum accessing cost:

Z fi % (depth of ¢; in the tree)
i=1



Optimum Binary Search Tree

@ Example: f; =10,f; =5, f3 =3
Q) (e2) (%)
© e ™ (%)



Optimum Binary Search Tree

Example: f; =10, fo =5, f3 =3
O © ©
) ONNC (=)
) S

1I0x1+5x24+3x3=29
10x24+5x1+3x2=31
10x3+H5x2+3x1=143



Optimum Binary Search Tree

Example: f; =10, fo =5, f3 =3
© © ©
) ONNC (=)
© S

10x1+5x24+3x3=29
10x24+5x1+3x2=31
10x3+H5x2+3x1=143



suppose we decided to let e, be the root

e1,€s, - ,ep_1 are on left sub-tree

€ki1, €ki2, - ,€n are on right sub-tree

d;: depth of e; in our tree

C,Cp, Cg: cost of tree, left sub-tree and right sub-tree

di =3,dy =2,d3 =3,dy, = 4,d5 =1,
e de =2,d7 = 4,dg = 3,dy = 4,
C=3fi+2fa+3fs+4fs+ f5+
() () 2f6 +4f7 +3fs +4fo
e e @ Cr=2fi+ fat+2f3+3f4
e e e Cr=fe+3fr+2fs+3fo

CZCL+CR+Z?:1JC]‘



C: cost of left tree
/

/
Cp: cost of left tree ,” . Cr: cost of left tree
N / .

C= Zfzde:Zfe(de— 1)+Zfz
=1 —1 —
k-1
ZZfe(de—l Zfzdz—l
=1

:CL+CR+ZfE

(=1



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C, and C'y respectively



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C, and C'y respectively

@ opt[i, j]: the optimum cost for the instance (fi, fit1, -+, fj)



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C, and C'y respectively

@ opt[i, j]: the optimum cost for the instance (fi, fit1, -+, fj)

opt[1,n| = (opt[1, k — 1]+0pt[k+1,n])+2fz
=1



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C, and C'y respectively

@ opt[i, j]: the optimum cost for the instance (fi, fit1, -+, fj)

opt[l,n] = min (opt[l,k — 1] + optlk + 1,n]) + Z fe

k:1<k<n
(=1



C=CL+Cr+> fi
(=1

@ In order to minimize C, need to minimize C, and C'y respectively

@ opt[i, j]: the optimum cost for the instance (fi, fit1, -+, fj)

opt[l,n] = min (opt[l,k — 1]+ opt[k + 1,n]) + z": e

k:1<k<n
(=1

@ In general, opt[i, j| =

0 ifi=j+1
miny;<i<; (optli,k — 1] + opt[k + 1, j]) + S fe ifi<y



Optimum Binary Search Tree
1 fsuml[0] - 0
2: for i <~ 1 to n do fsuml[i] < fsum[i — 1] + f;
> fsuml[i] = Z] 1 i
3: for i <~ 0 ton do opt[i +1,i] < 0
4: for { <~ 1 ton do
bs fori<1ton—/(+1do
j1+L0—1, optli,j] + o0
for k < i to j do
if opt[i,k — 1] + opt[k + 1, j] < opt[i, j] then
optli, j] < optli, k — 1] + opt[k + 1, j]
10: i, J] < k
11: optli, j| < optli, j] + fsumlj] — fsum[i — 1]

© o N




Printing the Tree

Print-Tree(¢, 5)

1. if i > j then

2 return

3: else

4: print("(")

5: Print-Tree(i, w[i, j] — 1)
6 print(7[i, j])
7 Print-Tree(n (i, j] + 1, 7)
8 print(")")




@ Summary



Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse




Comparison with greedy algorithms

@ Greedy algorithm: each step is making a small progress towards
constructing the solution

@ Dynamic programming: the whole solution is constructed in the
last step

Comparison with divide and conquer

@ Divide and conquer: an instance is broken into many independent
sub-instances, which are solved separately.

@ Dynamic programming: the sub-instances we constructed are
overlapping.




Definition of Cells for Problems We Learnt

@ Weighted interval scheduling: opt|i] = value of instance defined
by jobs {1,2,--- ,i}

@ Subset sum, knapsack: opt[i, W’| = value of instance with items
{1,2,---,i} and budget W’

@ Longest common subsequence: optli, j| = value of instance
defined by A[l..i] and BI1..j]

@ Shortest paths in DAG: f[v] = length of shortest path from s to v

@ Matrix chain multiplication, optimum binary search tree:
optli, j] = value of instances defined by matrices i to j



© Summary of Studies Until Nov 1st



Important notations/algorithms

@ Introduction:
e Asymptotic analysis: O, §2, ©, compare the orders



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders
o Polynomial time (efficient algorithm), exponential time



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders
o Polynomial time (efficient algorithm), exponential time

@ Graph Basics:



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders
o Polynomial time (efficient algorithm), exponential time

@ Graph Basics:
e Undirected graph, directed graph



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders
o Polynomial time (efficient algorithm), exponential time

@ Graph Basics:

e Undirected graph, directed graph
e Two representations: adjacency matrix, linked lists



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders

o Polynomial time (efficient algorithm), exponential time
@ Graph Basics:

e Undirected graph, directed graph

e Two representations: adjacency matrix, linked lists

e Path, cycle, tree, directed acyclic graph, bipartite graph



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders

o Polynomial time (efficient algorithm), exponential time
@ Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders

o Polynomial time (efficient algorithm), exponential time
@ Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm



Important notations/algorithms

@ Introduction:

e Asymptotic analysis: O, §2, ©, compare the orders

o Polynomial time (efficient algorithm), exponential time
@ Graph Basics:
Undirected graph, directed graph
Two representations: adjacency matrix, linked lists
Path, cycle, tree, directed acyclic graph, bipartite graph
Connectivity problem: BFS and DFS algorithm
Testing Bipartiteness problem: test-bipartiteness-BFS or
test-bipartiteness-DFS algorithm
Topological Ordering problem: topological-sort algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce
e Box Packing problem: greedy algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce

e Box Packing problem: greedy algorithm
o Interval Scheduling problem: schedule algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce
e Box Packing problem: greedy algorithm
o Interval Scheduling problem: schedule algorithm
e Interval Partitioning problem: partition algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce
Box Packing problem: greedy algorithm
Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
Offline Caching problem: FIF algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce

Box Packing problem: greedy algorithm

Interval Scheduling problem: schedule algorithm
Interval Partitioning problem: partition algorithm
Offline Caching problem: FIF algorithm

Priority Queue: heap



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce

Box Packing problem: greedy algorithm

Interval Scheduling problem: schedule algorithm

Interval Partitioning problem: partition algorithm

Offline Caching problem: FIF algorithm

Priority Queue: heap

Huffman Code problem: prefix code notation, Huffman algorithm



Important notations/algorithms

o Greedy algorithms: safety strategy+self reduce

Box Packing problem: greedy algorithm

Interval Scheduling problem: schedule algorithm

Interval Partitioning problem: partition algorithm

Offline Caching problem: FIF algorithm

Priority Queue: heap

Huffman Code problem: prefix code notation, Huffman algorithm
Exercise problems: Fractional knapsack problem, scheduling problem
(min weighted sum of completion times)



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine

e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine
e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
e Counting inversions problem: sort-and-count algorithm



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine
e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
e Counting inversions problem: sort-and-count algorithm
o Selection problem: selection algorithm based on quicksort



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine
e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
e Counting inversions problem: sort-and-count algorithm
o Selection problem: selection algorithm based on quicksort
e Polynomial Multiplication problem: multiply algorithm



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine

e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine

e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm



Important notations/algorithms

o Divide-and-Conquer algorithms: Divide+Conquer+Combine

e Sorting problem: merge-sort algorithm, quick-sort algorithm (and
In-Place sorting algorithm)
Counting inversions problem: sort-and-count algorithm
Selection problem: selection algorithm based on quicksort
Polynomial Multiplication problem: multiply algorithm
Recurrences: recursive-tree method and Master Theorem
Fibonacci number problem: power algorithm
Exercise problems: Closest Pair, Convex Hull, Two Matrix
Multiplication



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence
relation+calculate from base case
o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence
relation+calculate from base case
o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
e Subset Sum problem: DP algorithm + Recovering optimal schedule



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence
relation+calculate from base case
o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule
e Subset Sum problem: DP algorithm + Recovering optimal schedule
e Knapsack problem: DP algorithm + Recovering optimal schedule



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

o Edit distance with insertions and deletions problem: apply algorithm
for LCS problem



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

o Edit distance with insertions and deletions problem: apply algorithm
for LCS problem

e Edit distance with insertions, deletions and replacing problem



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

o Edit distance with insertions and deletions problem: apply algorithm
for LCS problem

e Edit distance with insertions, deletions and replacing problem

o Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

o Edit distance with insertions and deletions problem: apply algorithm
for LCS problem

e Edit distance with insertions, deletions and replacing problem

o Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm

e Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg



Important notations/algorithms

@ Dynamic Programming algorithms: subproblem-recurrence

relation+calculate from base case

o Weighted interval scheduling problem: DP algorithm + Recovering
optimal schedule

e Subset Sum problem: DP algorithm + Recovering optimal schedule

e Knapsack problem: DP algorithm + Recovering optimal schedule

o Longest common subsequence problem (LCS): DP algorithm +
Recovering optimal schedule

o Edit distance with insertions and deletions problem: apply algorithm
for LCS problem

e Edit distance with insertions, deletions and replacing problem

o Shortest Path in Directed Acyclic Graph (DAG): Shortest Paths in
DAG algorithm + print-path algorithm

e Matrix Chain Multiplication problem: matrix-chain-multiplication
algorithm + print-optimal-order alg

o Optimum Binary Search Tree Problem: Optimum Binary Search Tree
alg + Print Tree alg



Quiz 6 about Dynamic Programming algorithms

@ Fours problems about Dynamic programming algorithms



