Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

- 4 NP-Complete Problems
- Dealing with NP-Hard Problems

6 Summary

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

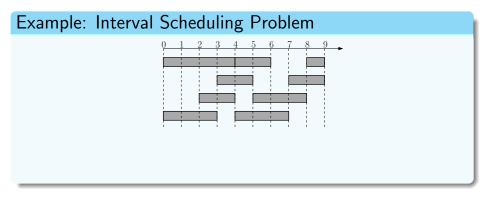
Output: whether there is an independent set of size at least k

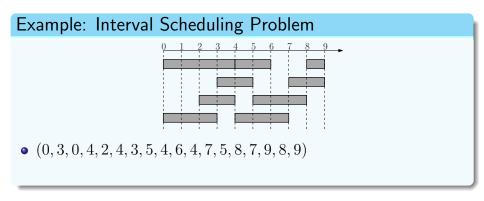
Example: Sorting problem

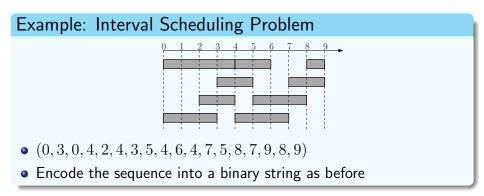
• Input: (3, 6, 100, 9, 60)

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:


- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/


- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/


- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/ 1001/

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/ 1001/111100/

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Function $X : \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^*$ to $\{0,1\}$ such that for any $s \in \{0,1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Define Problem as a Function $X : \{0,1\}^* \rightarrow \{0,1\}$

Def. A decision problem X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any binary string s

Define Problem as a Function $X : \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0, 1\}^*$ to $\{0, 1\}$ such that for any $s \in \{0, 1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, A(s) = X(s) for any binary string s

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most p(|s|) steps.

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

• Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for HC
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

Q: Given a graph G = (V, E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\mbox{-time}$ algorithm

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

• Certificate: a set of size k

Certifier for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{{\cal O}(n)}$ time algorithm for Ind-Set
- $\bullet\,$ Bob has a slow computer, which can only run an $O(n^3)\text{-time}\,$ algorithm

Q: Given graph G = (V, E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

Def. B is an efficient certifier for a problem X if

- *B* is a polynomial-time algorithm that takes two input strings *s* and *t*, and outputs 0 or 1.
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. B is an efficient certifier for a problem X if

- *B* is a polynomial-time algorithm that takes two input strings *s* and *t*, and outputs 0 or 1.
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

HC (Hamiltonian Cycle) \in NP

 \bullet Input: Graph G

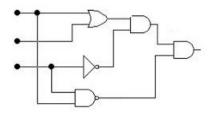
- $\bullet~{\sf Input:}~{\sf Graph}~G$
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p

- $\bullet~\mbox{Input:}~\mbox{Graph}~G$
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G,S) = 1 if and only if S gives an HC in G
- Clearly, B runs in polynomial time

- $\bullet~\mbox{Input:}~\mbox{Graph}~G$
- $\bullet\,$ Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G,S) = 1 if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $HC(G) = 1 \iff \exists S, B(G, S) = 1$

• Input: graph G = (V, E) and integer k

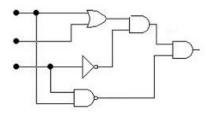
- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p


- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B {:}~ B((G,k),S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

- Input: graph G = (V, E) and integer k
- $\bullet~$ Certificate: a set $S\subseteq V$ of size k
- $|\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G,k)|)$ for some polynomial function p
- Certifier $B {:}~B((G,k),S) = 1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\mathsf{MIS}(G,k) = 1 \quad \iff \quad \exists S, \ B((G,k),S) = 1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates


Output: whether there is an assignment such that the output is 1?

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

Input: graph G = (V, E)

Input: graph G = (V, E)Output: whether G does not contain a Hamiltonian cycle

• Is $\overline{HC} \in NP$?

Input: graph G = (V, E)

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

Input: graph G = (V, E)

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

Input: graph G = (V, E)

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- $\bullet\,$ Alice can only convince Bob that G is a no-instance

Input: graph G = (V, E)

- Is $\overline{\mathsf{HC}} \in \mathsf{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- $\bullet\,$ Alice can only convince Bob that G is a no-instance
- $\overline{\mathsf{HC}} \in \mathsf{Co-NP}$

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s) = 1$ if and only if X(s) = 0.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g.
$$(\neg x_1 \wedge x_2) \lor (\neg x_1 \wedge \neg x_3) \lor x_1 \lor (\neg x_2 \wedge x_3)$$
 is a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g.
$$(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$$
 is a tautology

• Bob can certify that a formula is not a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g.
$$(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$$
 is a tautology

- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP

$\overline{\mathsf{P}} \subseteq \mathsf{N}\mathsf{P}$

Q: How can Alice convince Bob that *s* is a yes instance?

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

• The certificate is an empty string

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$

Q: How can Alice convince Bob that *s* is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

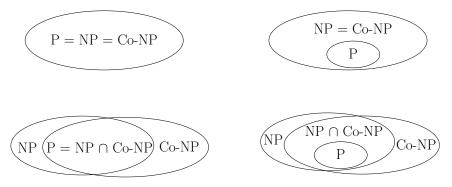
- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq$ Co-NP, thus $P \subseteq$ NP \cap Co-NP

Is P = NP?

• A famous, big, and fundamental open problem in computer science

- Most researchers believe $\mathsf{P} \neq \mathsf{NP}$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $\mathsf{P} \neq \mathsf{NP}$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently


- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
 - HC \notin P, unless P = NP

• Again, a big open problem

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

Notice that $X \in \mathsf{NP} \iff \overline{X} \in \mathsf{Co-NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co-NP}$

• People commonly believe we are in the 4th scenario

Outline

Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary