
47/75

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique



48/75

Recall: Independent Set Problem

Def. An independent set of G = (V,E) is a subset I ✓ V such that
no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem
Input: G = (V,E), k

Output: whether there is an independent set of size k in G



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



49/75

3-Sat P Ind-Set

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

A clause ) a group of 3
vertices, one for each literal

An edge between every pair of
vertices in same group

An edge between every pair of
contradicting literals

Problem: whether there is an
IS of size k = #clauses

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2

3-Sat instance is yes-instance , Ind-Set instance is yes-instance:

satisfying assignment ) independent set of size k

independent set of size k ) satisfying assignment



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



50/75

Satisfying Assignment ) IS of Size k

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every clause, at least 1
literal is satisfied

Pick the vertex correspondent
the literal

So, 1 literal from each group

No contradictions among the
selected literals

An IS of size k

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



51/75

IS of Size k ) Satisfying Assignment

(x1 _ ¬x2 _ ¬x3) ^ (x2 _ x3 _ x4) ^ (¬x1 _ ¬x3 _ x4)

For every group, exactly one
literal is selected in IS

No contradictions among the
selected literals

If xi is selected in IS, set xi = 1

If ¬xi is selected in IS, set
xi = 0

Otherwise, set xi arbitrarily

x2

x3

x1

¬x3

x4

¬x3

x4

¬x1

¬x2



52/75

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique



53/75

Def. A clique in an undirected graph G = (V,E) is a subset S ✓ V

such that 8u, v 2 S we have (u, v) 2 E

Clique Problem
Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?



53/75

Def. A clique in an undirected graph G = (V,E) is a subset S ✓ V

such that 8u, v 2 S we have (u, v) 2 E

Clique Problem
Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?



53/75

Def. A clique in an undirected graph G = (V,E) is a subset S ✓ V

such that 8u, v 2 S we have (u, v) 2 E

Clique Problem
Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?



53/75

Def. A clique in an undirected graph G = (V,E) is a subset S ✓ V

such that 8u, v 2 S we have (u, v) 2 E

Clique Problem
Input: G = (V,E) and integer k > 0,

Output: whether there exists a clique of size k in G

What is the relationship between Clique and Ind-Set?



54/75

Clique =P Ind-Set

Def. Given a graph G = (V,E), define G = (V,E) be the graph
such that (u, v) 2 E if and only if (u, v) /2 E.

Obs. S is an independent set in G if and only if S is a clique in G.



55/75

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique



56/75

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ✓ V such that for every (u, v) 2 E then u 2 S or v 2 S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k



56/75

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ✓ V such that for every (u, v) 2 E then u 2 S or v 2 S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k



56/75

Vertex-Cover

Def. Given a graph G = (V,E), a vertex cover of G is a subset
S ✓ V such that for every (u, v) 2 E then u 2 S or v 2 S .

Vertex-Cover Problem
Input: G = (V,E) and integer k

Output: whether there is a vertex cover of G of size at most k



57/75

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.



57/75

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.



57/75

Vertex-Cover =P Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of G = (V,E) if and only if V \ S is an
independent set of G.



58/75

Reductions of NP-Complete Problems

3D-Matching

Circuit-Sat

3-Sat

Ind-Set

Vertex-Cover

HC

Set-Cover

Subset-SumTSP

Knapsack

3-ColoringClique



59/75

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X



59/75

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X



59/75

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X



59/75

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as
Y P X.

In general, algorithm for Y can call the algorithm for X many
times.

However, for most reductions, we call algorithm for X only once

That is, for a given instance sY for Y , we only construct one
instance sX for X



60/75

A Strategy of Polynomial Reduction

Given an instance sY of problem Y , show how to construct in
polynomial time an instance sX of problem such that:
sY is a yes-instance of Y ) sX is a yes-instance of X

sX is a yes-instance of X ) sY is a yes-instance of Y



61/75

Outline

1 Some Hard Problems

2 P, NP and Co-NP

3 Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems

5 Dealing with NP-Hard Problems

6 Summary



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:

Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1

Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



62/75

Q: How far away are we from proving or disproving P = NP?

Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

For 3-Sat problem:
Assume the number of clauses is ⇥(n), n = number variables

Best algorithm runs in time O(cn) for some constant c > 1
Best lower bound is ⌦(n)

Essentially we have no techniques for proving lower bound for
running time



63/75

Dealing with NP-Hard Problems

Faster exponential time algorithms

Solving the problem for special cases

Fixed parameter tractability

Approximation algorithms



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))

2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))

Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))

In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



64/75

Faster Exponential Time Algorithms

3-SAT:

Brute-force: O(2n · poly(n))
2n ! 1.844n ! 1.3334n

Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:

Brute-force: O(n! · poly(n))
Better algorithm: O(2n · poly(n))
In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices



65/75

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·



65/75

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·



65/75

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·



65/75

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·



65/75

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but
easy on

trees

bounded tree-width graphs

interval graphs

· · ·



66/75

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·



66/75

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·



66/75

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·



66/75

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on
general graphs, but easy on

path (HW2 Problem 2)

trees

· · ·



67/75

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.



67/75

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.



67/75

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)

Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.



67/75

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.



67/75

Fixed Parameter Tractability

Problem: whether there is a vertex
cover of size k, for a small k (number
of nodes is n, number of edges is
⇥(n).)

Brute-force algorithm: O(knk+1)

Better running time : O(2k · kn)
Running time is f(k)nc for some c

independent of k

Vertex-Cover is fixed-parameter
tractable.



68/75

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



68/75

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



68/75

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



68/75

Approximation Algorithms

For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

There is an 2-approximation for the vertex cover problem: we can
e�ciently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



69/75

2-Approximation Algorithm for Vertex Cover

VertexCover(G)
1: C  ;
2: while 6= ; do
3: select an edge (u, v) 2 E, C  C [ {u, v}
4: Remove from E every edge incident on either u or v

5: return C

Let the set C and C
⇤ be the sets output by above algorithm and

an optimal alg, respectively. Let S be the set of edges selected.

Since no two edge in S are covered by the same vertex (Once an
edge is picked in line 3, all other edges that are incident on its
endpoints are removed from E in line 4), we have |C⇤| � |S|;
As we have added both vertices of edge (u, v), we get |C| = 2|S|
but C⇤ have to add one of the two, thus, |C|/|C⇤|  2.


