Reductions of NP-Complete Problems

Recall: Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Independent Set (Ind-Set) Problem

Input: $G=(V, E), k$
Output: whether there is an independent set of size k in G

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

3-Sat \leq_{P} Ind-Set

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- A clause \Rightarrow a group of 3 vertices, one for each literal
- An edge between every pair of vertices in same group
- An edge between every pair of contradicting literals
- Problem: whether there is an IS of size $k=$ \#clauses

3-Sat instance is yes-instance \Leftrightarrow Ind-Set instance is yes-instance:

- satisfying assignment \Rightarrow independent set of size k
- independent set of size $k \Rightarrow$ satisfying assignment

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals

Satisfying Assignment \Rightarrow IS of Size k

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every clause, at least 1 literal is satisfied
- Pick the vertex correspondent the literal
- So, 1 literal from each group
- No contradictions among the selected literals
- An IS of size k

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$
- If $\neg x_{i}$ is selected in IS, set $x_{i}=0$

IS of Size $k \Rightarrow$ Satisfying Assignment

- $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
- For every group, exactly one literal is selected in IS
- No contradictions among the selected literals
- If x_{i} is selected in IS, set $x_{i}=1$
- If $\neg x_{i}$ is selected in IS, set $x_{i}=0$
- Otherwise, set x_{i} arbitrarily

Reductions of NP-Complete Problems

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Clique Problem

Input: $G=(V, E)$ and integer $k>0$,
Output: whether there exists a clique of size k in G

Def. A clique in an undirected graph $G=(V, E)$ is a subset $S \subseteq V$ such that $\forall u, v \in S$ we have $(u, v) \in E$

Clique Problem

Input: $G=(V, E)$ and integer $k>0$,
Output: whether there exists a clique of size k in G

- What is the relationship between Clique and Ind-Set?

Clique $=p$ Ind-Set

Def. Given a graph $G=(V, E)$, define $\bar{G}=(V, \bar{E})$ be the graph such that $(u, v) \in \bar{E}$ if and only if $(u, v) \notin E$.

Obs. S is an independent set in G if and only if S is a clique in \bar{G}.

Reductions of NP-Complete Problems

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover

Def. Given a graph $G=(V, E)$, a vertex cover of G is a subset $S \subseteq V$ such that for every $(u, v) \in E$ then $u \in S$ or $v \in S$.

Vertex-Cover Problem

Input: $G=(V, E)$ and integer k
Output: whether there is a vertex cover of G of size at most k

Vertex-Cover $=p$ Ind-Set

Vertex-Cover $={ }_{P}$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

Vertex-Cover $=p$ Ind-Set

Q: What is the relationship between Vertex-Cover and Ind-Set?

A: S is a vertex-cover of $G=(V, E)$ if and only if $V \backslash S$ is an independent set of G.

Reductions of NP-Complete Problems

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once

A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:
Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_{Y} for Y, we only construct one instance s_{X} for X

A Strategy of Polynomial Reduction

- Given an instance s_{Y} of problem Y, show how to construct in polynomial time an instance s_{X} of problem such that:
- s_{Y} is a yes-instance of $Y \Rightarrow s_{X}$ is a yes-instance of X
- s_{X} is a yes-instance of $X \Rightarrow s_{Y}$ is a yes-instance of Y

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Q: How far away are we from proving or disproving $P=N P$?

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$
- Best lower bound is $\Omega(n)$

Q: How far away are we from proving or disproving $\mathrm{P}=\mathrm{NP}$?

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
- Assume the number of clauses is $\Theta(n), n=$ number variables
- Best algorithm runs in time $O\left(c^{n}\right)$ for some constant $c>1$
- Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

Dealing with NP-Hard Problems

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

Faster Exponential Time Algorithms

3-SAT:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$
- Better algorithm: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$

Faster Exponential Time Algorithms

3-SAT:

- Brute-force: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- $2^{n} \rightarrow 1.844^{n} \rightarrow 1.3334^{n}$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n!\cdot \operatorname{poly}(n))$
- Better algorithm: $O\left(2^{n} \cdot \operatorname{poly}(n)\right)$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs

Solving the problem for special cases

Maximum independent set problem is NP-hard on general graphs, but easy on

- trees
- bounded tree-width graphs
- interval graphs
- ...

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)
- trees

Solving the problem for special cases

Collaborative delivery problem (reduction from 3DM) is NP-hard on general graphs, but easy on

- path (HW2 Problem 2)
- trees
- ...

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$
- Running time is $f(k) n^{c}$ for some c independent of k

Fixed Parameter Tractability

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is $\Theta(n)$.)
- Brute-force algorithm: $O\left(k n^{k+1}\right)$
- Better running time : $O\left(2^{k} \cdot k n\right)$
- Running time is $f(k) n^{c}$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

Approximation Algorithms

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

2-Approximation Algorithm for Vertex Cover

VertexCover (G)

1: $C \leftarrow \emptyset$
2: while $\neq \emptyset$ do
3: \quad select an edge $(u, v) \in E, C \leftarrow C \cup\{u, v\}$
4: \quad Remove from E every edge incident on either u or v
5: return C

- Let the set C and C^{*} be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3 , all other edges that are incident on its endpoints are removed from E in line 4), we have $\left|C^{*}\right| \geq|S|$;
- As we have added both vertices of edge (u, v), we get $|C|=2|S|$ but C^{*} have to add one of the two, thus, $|C| /\left|C^{*}\right| \leq 2$.

