Outline

1. **Minimum Spanning Tree**
 - Kruskal’s Algorithm
 - Reverse-Kruskal’s Algorithm
 - Prim’s Algorithm

2. **Single Source Shortest Paths**
 - Dijkstra’s Algorithm

3. **Shortest Paths in Graphs with Negative Weights**

4. **All-Pair Shortest Paths and Floyd-Warshall**
Recall the greedy strategy for Kruskal’s algorithm: choose the edge with the smallest weight.
Recall the greedy strategy for Kruskal’s algorithm: choose the edge with the smallest weight.

Greedy strategy for Prim’s algorithm: choose the lightest edge incident to a.
Recall the greedy strategy for Kruskal’s algorithm: choose the edge with the smallest weight.

Greedy strategy for Prim’s algorithm: choose the lightest edge incident to a.
Lemma It is safe to include the lightest edge incident to a.
Lemma: It is safe to include the lightest edge incident to \(a \).

Proof.

- Let \(T \) be a MST
- Consider all components obtained by removing \(a \) from \(T \)
Lemma It is safe to include the lightest edge incident to \(a \).

Proof.

- Let \(T \) be a MST.
- Consider all components obtained by removing \(a \) from \(T \).
- Let \(e^* \) be the lightest edge incident to \(a \) and \(e^* \) connects \(a \) to component \(C \).
Lemma It is safe to include the lightest edge incident to a.

Proof.

- Let T be a MST
- Consider all components obtained by removing a from T
- Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C
Lemma It is safe to include the lightest edge incident to a.

Proof.

- Let T be a MST
- Consider all components obtained by removing a from T
- Let e^* be the lightest edge incident to a and e^* connects a to component C
- Let e be the edge in T connecting a to C
- $T' = T \setminus \{e\} \cup \{e^*\}$ is a spanning tree with $w(T') \leq w(T)$
Prim’s Algorithm: Example
Prim’s Algorithm: Example
Prim’s Algorithm: Example

The image shows a graph with nodes labeled a, b, c, d, e, f, g, h, and i, connected by edges with weights. The graph starts with node a and proceeds to b, c, d, f, e, g, and h, highlighting the Prim’s algorithm process.
Prim’s Algorithm: Example
Greedy Algorithm

MST-Greedy1(\(G, w\))

1: \(S \leftarrow \{s\}\), where \(s\) is arbitrary vertex in \(V\)
2: \(F \leftarrow \emptyset\)
3: while \(S \neq V\) do
4: \((u, v) \leftarrow\) lightest edge between \(S\) and \(V \setminus S\), where \(u \in S\) and \(v \in V \setminus S\)
5: \(S \leftarrow S \cup \{v\}\)
6: \(F \leftarrow F \cup \{(u, v)\}\)
7: return \((V, F)\)
Greedy Algorithm

MST-Greedy1(G, w)

1: \(S \leftarrow \{s\} \), where \(s \) is arbitrary vertex in \(V \)
2: \(F \leftarrow \emptyset \)
3: \textbf{while} \(S \neq V \) \textbf{do}
4: \((u, v) \leftarrow \text{lightest edge between } S \text{ and } V \setminus S \),
 \hspace{1cm} \text{where } u \in S \text{ and } v \in V \setminus S
5: \(S \leftarrow S \cup \{v\} \)
6: \(F \leftarrow F \cup \{(u, v)\} \)
7: \textbf{return} \((V, F)\)

Running time of naive implementation: \(O(nm) \)
Prim’s Algorithm: Efficient Implementation of Greedy Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S: \{u, v\} \in E} w(u, v)$: the weight of the lightest edge between v and S
- $\pi[v] = \arg \min_{u \in S: \{u, v\} \in E} w(u, v)$: $(\pi[v], v)$ is the lightest edge between v and S
Prim’s Algorithm: Efficient Implementation of Greedy Algorithm

For every \(v \in V \setminus S \) maintain

- \(d[v] = \min_{u \in S : (u,v) \in E} w(u,v) \): the weight of the lightest edge between \(v \) and \(S \)
- \(\pi[v] = \arg\min_{u \in S : (u,v) \in E} w(u,v) \): \((\pi[v],v) \) is the lightest edge between \(v \) and \(S \)

In every iteration

- Pick \(u \in V \setminus S \) with the smallest \(d[u] \) value
- Add \((\pi[u],u) \) to \(F \)
- Add \(u \) to \(S \), update \(d \) and \(\pi \) values.
Prim’s Algorithm

MST-Prim\((G, w)\)

1: \(s \leftarrow \text{arbitrary vertex in } G\)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \text{ and } d[v] \leftarrow \infty \text{ for every } v \in V \setminus \{s\}\)
3: while \(S \neq V\) do
4: \(u \leftarrow \text{vertex in } V \setminus S \text{ with the minimum } d[u]\)
5: \(S \leftarrow S \cup \{u\}\)
6: for each \(v \in V \setminus S\) such that \((u, v) \in E\) do
7: if \(w(u, v) < d[v]\) then
8: \(d[v] \leftarrow w(u, v)\)
9: \(\pi[v] \leftarrow u\)
10: return \(\{(u, \pi[u]) | u \in V \setminus \{s\}\}\)
Example
Example
Example

(5, a)

(12, a)
Example
Example
Example

A graph with labeled vertices and edges, showing connections among nodes a, b, c, d, e, f, g, h, and i.
Example

\begin{itemize}
\item $(13, c)$
\item $(11, b)$
\item $(2, c)$
\item $(4, c)$
\end{itemize}
Example
Example

\begin{figure}
\centering
\begin{tikzpicture}
\node[shape=circle,draw=black] (a) at (0,0) {a};
\node[shape=circle,draw=black] (b) at (1,1) {b};
\node[shape=circle,draw=black] (c) at (2,1) {c};
\node[shape=circle,draw=black] (i) at (1,-1) {i};
\node[shape=circle,draw=black] (h) at (-1,0) {h};
\node[shape=circle,draw=black] (g) at (0,-2) {g};
\node[shape=circle,draw=black] (d) at (3,0) {d};
\node[shape=circle,draw=black] (f) at (3,-2) {f};
\node[shape=circle,draw=black] (e) at (4,0) {e};

\draw[->,thick](a) to node [above]{5} (h);
\draw[->,thick](b) to node [left]{8} (c);
\draw[->,thick](i) to node [left]{2} (c);
\draw[->,thick](h) to node [below]{7} (i);
\draw[->,thick](i) to node [below]{6} (g);
\draw[->,thick](h) to node [right]{11} (a);
\draw[->,thick](a) to node [below]{12} (h);
\draw[->,thick](b) to node [below]{11} (i);
\draw[->,thick](g) to node [below]{1} (f);
\draw[->,thick](c) to node [above]{13} (d);
\draw[->,thick](f) to node [below]{3} (e);
\draw[->,thick](e) to node [above]{10} (f);
\draw[->,thick](d) to node [below]{9} (e);

\node at (1.5,1) {(13, c)};
\node at (-1.5,-1) {(11, b)};
\node at (1.5,-1) {(2, c)};
\end{tikzpicture}
\end{figure}
Example
Example
Example
Example
Example
Example
Example
Example

(13, c)

(10, f)
Example

(1, g)

(10, f)

(13, c)
Example
Example
Example
Example
Example
Example
Prim’s Algorithm

For every $v \in V \setminus S$ maintain

- $d[v] = \min_{u \in S : (u,v) \in E} w(u,v)$:
 - the weight of the lightest edge between v and S
- $\pi[v] = \arg \min_{u \in S : (u,v) \in E} w(u,v)$:
 - $(\pi[v], v)$ is the lightest edge between v and S

In every iteration

- Pick $u \in V \setminus S$ with the smallest $d[u]$ value
- Add $(\pi[u], u)$ to F
- Add u to S, update d and π values.
Prim’s Algorithm

For every \(v \in V \setminus S \) maintain

- \(d[v] = \min_{u \in S : (u, v) \in E} w(u, v) \): the weight of the lightest edge between \(v \) and \(S \)
- \(\pi[v] = \arg \min_{u \in S : (u, v) \in E} w(u, v) \): \((\pi[v], v) \) is the lightest edge between \(v \) and \(S \)

In every iteration

- Pick \(u \in V \setminus S \) with the smallest \(d[u] \) value \(\text{extract min} \)
- Add \((\pi[u], u) \) to \(F \)
- Add \(u \) to \(S \), update \(d \) and \(\pi \) values \(\text{decrease_key} \)

Use a priority queue to support the operations
Def. A priority queue is an abstract data structure that maintains a set U of elements, each with an associated key value, and supports the following operations:

- $\text{insert}(v, \text{key}_\text{value})$: insert an element v, whose associated key value is key_value.
- $\text{decrease_key}(v, \text{new}_\text{key}_\text{value})$: decrease the key value of an element v in queue to $\text{new}_\text{key}_\text{value}$
- $\text{extract_min}()$: return and remove the element in queue with the smallest key value
- ...
Prim’s Algorithm

MST-Prim\((G, w)\)

1: \(s \leftarrow \text{arbitrary vertex in } G \)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
3:
4: \textbf{while} \(S \neq V \) \textbf{do}
5: \(u \leftarrow \text{vertex in } V \setminus S \) with the minimum \(d[u] \)
6: \(S \leftarrow S \cup \{u\} \)
7: \textbf{for} each \(v \in V \setminus S \) such that \((u, v) \in E\) \textbf{do}
8: \hspace{1em} \textbf{if} \(w(u, v) < d[v] \) \textbf{then}
9: \hspace{2em} \(d[v] \leftarrow w(u, v) \)
10: \hspace{2em} \(\pi[v] \leftarrow u \)
11: \textbf{return} \(\{(u, \pi[u])|u \in V \setminus \{s\}\} \)
Prim’s Algorithm Using Priority Queue

MST-Prim(G, w)

1: \(s \leftarrow \) arbitrary vertex in \(G \)
2: \(S \leftarrow \emptyset, d(s) \leftarrow 0 \) and \(d[v] \leftarrow \infty \) for every \(v \in V \setminus \{s\} \)
3: \(Q \leftarrow \) empty queue, for each \(v \in V : Q.\text{insert}(v, d[v]) \)
4: \textbf{while} \(S \neq V \) \textbf{do}
5: \(u \leftarrow Q.\text{extract}_\text{min}() \)
6: \(S \leftarrow S \cup \{u\} \)
7: \textbf{for each} \(v \in V \setminus S \) \textbf{such that} \((u, v) \in E \) \textbf{do}
8: \quad \textbf{if} \(w(u, v) < d[v] \) \textbf{then}
9: \quad \quad \(d[v] \leftarrow w(u, v), Q.\text{decrease}_\text{key}(v, d[v]) \)
10: \quad \(\pi[v] \leftarrow u \)
11: \textbf{return} \(\{(u, \pi[u])|u \in V \setminus \{s\}\} \)
Running Time of Prim’s Algorithm Using Priority Queue

\[O(n) \times \text{(time for extract_min)} + O(m) \times \text{(time for decrease_key)} \]
Running Time of Prim’s Algorithm Using Priority Queue

\[O(n) \times \text{(time for extract_min)} + O(m) \times \text{(time for decrease_key)} \]

<table>
<thead>
<tr>
<th>Concrete DS</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>Overall Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>
Running Time of Prim’s Algorithm Using Priority Queue

\[O(n) \times \text{(time for extract_min)} + O(m) \times \text{(time for decrease_key)} \]

<table>
<thead>
<tr>
<th>concrete DS</th>
<th>extract_min</th>
<th>decrease_key</th>
<th>overall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>