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@ Prim’s Algorithm



Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.




Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.



Design Greedy Strategy for MST

@ Recall the greedy strategy for Kruskal's algorithm: choose the
edge with the smallest weight.

@ Greedy strategy for Prim's algorithm: choose the lightest edge
incident to a.



Lemma It is safe to include the lightest edge incident to a.




Lemma It is safe to include the lightest edge incident to a.

Proof.
@ Let T be a MST

@ Consider all components obtained by removing a from T’

S4v4




Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

\\\\\\\



Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST
@ Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

o Let e be the edge in T" connecting a to C'

\\\\\\\




Lemma It is safe to include the lightest edge incident to a. )

lightest edge e* incident to a
/

Proof.
@ Let T be a MST

Consider all components obtained by removing a from T’

@ Let e* be the lightest edge incident to a and e* connects a to
component C'

Let e be the edge in T' connecting a to C'

T" =T\ {e} U{e*} is a spanning tree with w(7") < w(T) O
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Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,
where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F)




Greedy Algorithm

MST-Greedyl(G, w)

1: S < {s}, where s is arbitrary vertex in V

2: <«

3: while S #V do

4; (u,v) « lightest edge between S and V'\ S,

where u € Sandv e V'\ S

5: S+ Su{v}

6: F+ FuU{(u,v)}

7: return (V, F) )

@ Running time of naive implementation: O(nm)



Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyes:(uvecr w(u, v):
(m[v],v) is the lightest edge between v and S
(13,¢)




Prim's Algorithm: Efficient Implementation of

Greedy Algorithm

For every v € V' \ S maintain
o d[v] = minyeg:(u,v)cr W, v):

the weight of the lightest edge between v and S
o m[v] = arg minyegs:(uv)cr w(U, v):

(m[v],v) is the lightest edge between v and S

In every iteration
@ Pick u € V'\ S with the smallest d[u] value
e Add (m[u],u) to F
@ Add u to S, update d and 7 values.



Prim’s Algorithm

MST-Prim(G, w)

s <— arbitrary vertex in G
S(—(D d(s) + 0 and d[v] + oo for every v € V' \ {s}
while S # V do
u < vertex in V'\ .S with the minimum d[u]
S+ SU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
m[v] « u
return {(u, 7[u])|lu € V' \ {s}}
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Prim’s Algorithm

For every v € V' \ .S maintain
o d[v] = minyeg.(uv)er w(u, v):
the weight of the lightest edge between v and S
o m[v] = arg minyeg:(uv)cr WU, v):
(m[v],v) is the lightest edge between v and S

In every iteration

e Pick uw € V'\ S with the smallest d[u] value extract_min
e Add (m[u],u) to F
@ Add u to S, update d and 7 values. decrease_key

Use a priority queue to support the operations



Def. A priority queue is an abstract data structure that maintains a

set U of elements, each with an associated key value, and supports

the following operations:

@ insert(v, key_value): insert an element v, whose associated key
value is key_value.

o decrease key(v, new_key value): decrease the key value of an
element v in queue to new_key_value

@ extract_min(): return and remove the element in queue with the
smallest key value




Prim’s Algorithm

MST-Prim(G, w)
1: s < arbitrary vertex in G

2: S+ 0,d(s) < 0 and d[v] + oo for every v € V' \ {s}
3:

»

while S # V do
u < vertex in V' \ S with the minimum dJu]
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v)
10: m[v] + u
11: return {(u, wlu])|u € V' \ {s}}

e 0N a




Prim's Algorithm Using Priority Queue

MST-Prim(G, w)
s <— arbitrary vertex in G
S+ 0,d(s) « 0 and d[v] « oo for every v € V' \ {s}
. () + empty queue, for each v € V: Q.insert(v, d[v])
while S # V do
u < @.extract_min()
S« SuU{u}
for each v € V'\ S such that (u,v) € E do
if w(u,v) < d[v] then
d[v] + w(u,v), Q.decrease key(v, d[v])
m[v] + u
return {(u, 7[u])|lu € V' \ {s}}
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Running Time of Prim’s Algorithm Using Priority

Queue

O(n)x (time for extract_min) + O(m)x (time for decrease_key)
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