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Quicksort vs Merge-Sort

Merge Sort Quicksort

Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85
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Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429
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Quicksort

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)
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Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)
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Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.
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Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n lg n).
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Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

To partition the array into two parts, we only need O(1) extra
space.
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partition(A, `, r)
1: p random integer between ` and r, swap A[p] and A[`]
2: i `, j  r

3: while true do

4: while i < j and A[i] < A[j] do j  j � 1
5: if i = j then break

6: swap A[i] and A[j]; i i+ 1
7: while i < j and A[i] < A[j] do i i+ 1

8: if i = j then break

9: swap A[i] and A[j]; j  j � 1

10: return i
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In-Place Implementation of Quick-Sort

quicksort(A, `, r)
1: if ` � r then return

2: m patition(A, `, r)
3: quicksort(A, `,m� 1)
4: quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.
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Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays
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