
20/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number



21/75

Quicksort vs Merge-Sort

Merge Sort Quicksort

Divide Trivial Separate small and big numbers
Conquer Recurse Recurse
Combine Merge 2 sorted arrays Trivial



22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 85



22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564



22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 8564



22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429



22/75

Quicksort Example

Assumption We can choose median of an array of size n in O(n)
time.

1582 75 6938 179464 25 7629 92 3745 8564

15 82 75 6938 17 9425 7629 923745 856429

15 82 75 693817 9425 76923745 856429



23/75

Quicksort

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)



23/75

Quicksort

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)



23/75

Quicksort

quicksort(A, n)
1: if n  1 then return A

2: x lower median of A
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Recurrence T (n)  2T (n/2) +O(n)

Running time = O(n lg n)



24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



24/75

Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

1 There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

2 Choose a pivot randomly and pretend it is the median (it is
practical)



25/75

Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR



26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



26/75

Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1].

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

In theory: assume they can.



27/75

Quicksort Using A Random Pivot

quicksort(A, n)
1: if n  1 then return A

2: x a random element of A (x is called a pivot)
3: AL  array of elements in A that are less than x \\ Divide
4: AR  array of elements in A that are greater than x \\ Divide
5: BL  quicksort(AL, length of AL) \\ Conquer
6: BR  quicksort(AR, length of AR) \\ Conquer
7: t number of times x appear A
8: return concatenation of BL, t copies of x, and BR

Lemma The expected running time of the algorithm is O(n lg n).



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 856429 17

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29 17

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 29

i j

17 1764

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764

i j

8264

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 17648264

i j

37 64

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64

i j

7564

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 647564

ji

15 64

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64

i j

9464

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 649464

i j

25 64

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 64

i j

64 69

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.



28/75

Quicksort Can Be Implemented as an “In-Place”
Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small”
extra space.

1582 75 6938 94 25 76 92 3745 8564 2917 1764826437 64756415 64946425 6464 69

ji

To partition the array into two parts, we only need O(1) extra
space.



29/75

partition(A, `, r)
1: p random integer between ` and r, swap A[p] and A[`]
2: i `, j  r

3: while true do

4: while i < j and A[i] < A[j] do j  j � 1
5: if i = j then break

6: swap A[i] and A[j]; i i+ 1
7: while i < j and A[i] < A[j] do i i+ 1

8: if i = j then break

9: swap A[i] and A[j]; j  j � 1

10: return i



30/75

In-Place Implementation of Quick-Sort

quicksort(A, `, r)
1: if ` � r then return

2: m patition(A, `, r)
3: quicksort(A, `,m� 1)
4: quicksort(A,m+ 1, r)

To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29



31/75

Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the
total size of two arrays

3 8 12 20 32 48

5 7 9 25 29

3 5 7 8 9 12 20 25 29 32 48



32/75

Outline

1 Divide-and-Conquer

2 Counting Inversions

3 Quicksort and Selection
Quicksort
Lower Bound for Comparison-Based Sorting Algorithms
Selection Problem

4 Polynomial Multiplication

5 Other Classic Algorithms using Divide-and-Conquer

6 Solving Recurrences

7 Computing n-th Fibonacci Number


