e Quicksort and Selection
@ Quicksort



Quicksort vs Merge-Sort

Merge Sort Quicksort
Divide Trivial Separate small and big numbers
Conquer Recurse Recurse

Combine | Merge 2 sorted arrays Trivial



Quicksort Example

Assumption We can choose median of an array of size n in O(n) J
time.
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Quicksort Example

Assumption We can choose median of an array of size n in O(n) J

time.

29 1827564384594 169 |25|76|15|92|37| 17|85

2913814512515 |37 17164 |82|75]94|92|69 | 76|85

25 115 117129 |38 |45 |37 64|82 |75]94|92|69 | 76|85




quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < lower median of A

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7
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quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < lower median of A

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

@ Recurrence T'(n) < 2T(n/2) + O(n)
@ Running time = O(nlgn)
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Assumption We can choose median of an array of size n in O(n)
time.

Q: How to remove this assumption?

A:

© There is an algorithm to find median in O(n) time, using
divide-and-conquer (we shall not talk about it; it is complicated
and not practical)

@ Choose a pivot randomly and pretend it is the median (it is
practical)




Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < a random element of A (x is called a pivot)

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:
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Randomized Algorithm Model

Assumption There is a procedure to produce a random real number
in [0, 1]. J

Q: Can computers really produce random numbers? |

A: No! The execution of a computer programs is deterministic! )

@ In practice: use pseudo-random-generator, a deterministic
algorithm returning numbers that “look like” random

@ In theory: assume they can.



Quicksort Using A Random Pivot

quicksort(A, n)
1. if n <1 then return A

t < number of times = appear A
return concatenation of By, t copies of x, and Bp

2: x < a random element of A (x is called a pivot)

3: Ay < array of elements in A that are less than x \\ Divide
4: Ap < array of elements in A that are greater than z \\ Divide
5. By, < quicksort(Ay, length of A) \\ Conquer
6: Br < quicksort(Ag, length of Ag) \\ Conquer
7

8:

Lemma The expected running time of the algorithm is O(nlgn). J
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Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small
extra space. J

qj

1713711512938 |45 |25 |64 |69 |76|94|92|75|82|85

e To partition the array into two parts, we only need O(1) extra
space.



partition(A, ¢, )
1. p < random integer between ¢ and r, swap A[p| and A[/(]
R AR
3: while true do

4:
5-
6:
7
8

9:

while i < j and Afi] < A[j]do j <+ j—1
if - = j then break

swap Afi] and A[j]; i+ i+ 1

while i < j and Afi] < A[j] do i< i+1
if = j then break

swap Afi] and A[j]; j«+j—1

10: return 2




In-Place Implementation of Quick-Sort

quicksort(A, ¢, r)
1: if ¢ > r then return
2: m < patition(A, ¢, r)
3: quicksort(A,¢,m — 1)
4: quicksort(A,m + 1,r)

@ To sort an array A of size n, call quicksort(A,1,n).

Note: We pass the array A by reference, instead of by copying. J
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Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays




© Quicksort and Selection

@ Lower Bound for Comparison-Based Sorting Algorithms



