
67/75

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time

67/75

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time

67/75

Closest Pair
Input: n points in plane: (x1, y1), (x2, y2), · · · , (xn, yn)

Output: the pair of points that are closest

Trivial algorithm: O(n2) running time

68/75

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

68/75

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

�

68/75

Divide-and-Conquer Algorithm for Closest Pair

Divide: Divide the points into two halves via a vertical line

Conquer: Solve two sub-instances recursively

Combine: Check if there is a closer pair between left-half and
right-half

�

�
2

�
2

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby

time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)

Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)

Running time: O(n lg n)

69/75

Divide-and-Conquer Algorithm for Closest Pair

�

�
2

�
2

Each box contains at most one pair
For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T (n) = 2T (n/2) +O(n)
Running time: O(n lg n)

70/75

O(n lg n)-Time Algorithm for Convex Hull

70/75

O(n lg n)-Time Algorithm for Convex Hull

70/75

O(n lg n)-Time Algorithm for Convex Hull

70/75

O(n lg n)-Time Algorithm for Convex Hull

70/75

O(n lg n)-Time Algorithm for Convex Hull

71/75

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n⇥ n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)
1: for i 1 to n do

2: for j 1 to n do

3: C[i, j] 0
4: for k 1 to n do

5: C[i, j] C[i, j] + A[i, k]⇥ B[k, j]

6: return C

running time = O(n3)

71/75

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n⇥ n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)
1: for i 1 to n do

2: for j 1 to n do

3: C[i, j] 0
4: for k 1 to n do

5: C[i, j] C[i, j] + A[i, k]⇥ B[k, j]

6: return C

running time = O(n3)

71/75

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n⇥ n matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication(A,B, n)
1: for i 1 to n do

2: for j 1 to n do

3: C[i, j] 0
4: for k 1 to n do

5: C[i, j] C[i, j] + A[i, k]⇥ B[k, j]

6: return C

running time = O(n3)

72/75

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

✓
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

◆

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·

Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

72/75

Try to Use Divide-and-Conquer

A11 A12

A21 A22

A =

n/2

n/2 B11 B12

B21 B22

B =

n/2

n/2

C =

✓
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

◆

matrix multiplication(A,B) recursively calls
matrix multiplication(A11, B11), matrix multiplication(A12, B21),
· · ·
Recurrence for running time: T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)

73/75

Strassen’s Algorithm

T (n) = 8T (n/2) +O(n2)

Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

New recurrence: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)

73/75

Strassen’s Algorithm

T (n) = 8T (n/2) +O(n2)

Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

New recurrence: T (n) = 7T (n/2) +O(n2)

Solving Recurrence T (n) = O(nlog2 7) = O(n2.808)

