Closest Pair

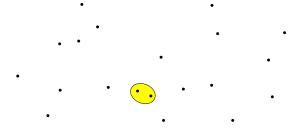
Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ **Output:** the pair of points that are closest



• Trivial algorithm: $O(n^2)$ running time

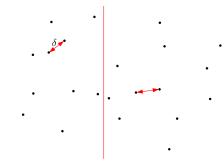
• Divide: Divide the points into two halves via a vertical line

•

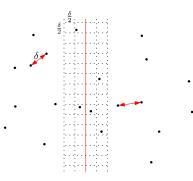
.

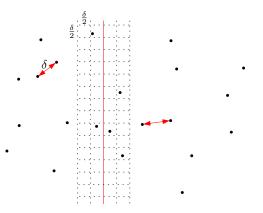
• .

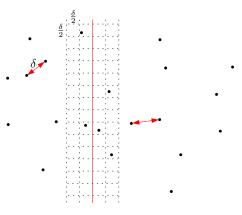
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively



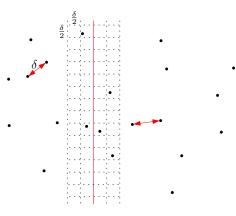
- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half



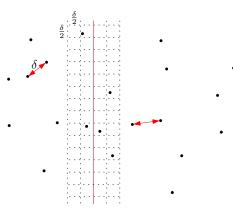




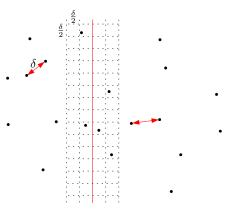
Each box contains at most one pair



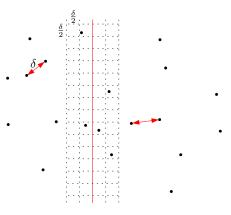
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby



- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)

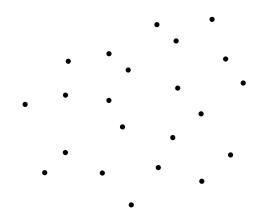


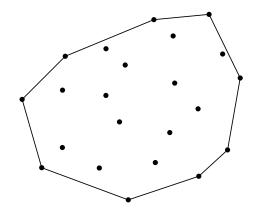
- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)

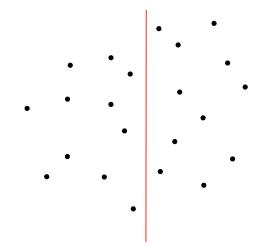


- Each box contains at most one pair
- For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$

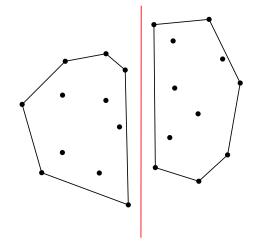
69/75

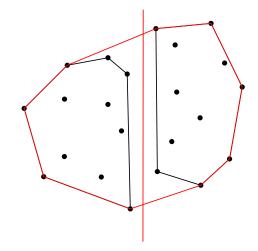






70/75





Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B**Output:** C = AB

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

1: for
$$i \leftarrow 1$$
 to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$

6: **return** *C*

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

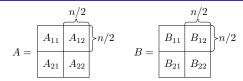
Naive Algorithm: matrix-multiplication (A, B, n)

1: for
$$i \leftarrow 1$$
 to n do
2: for $j \leftarrow 1$ to n do
3: $C[i, j] \leftarrow 0$
4: for $k \leftarrow 1$ to n do
5: $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$

6: **return** *C*

• running time = $O(n^3)$

Try to Use Divide-and-Conquer



- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A, B) recursively calls matrix_multiplication(A₁₁, B₁₁), matrix_multiplication(A₁₂, B₂₁),
 ...

Try to Use Divide-and-Conquer

$$A = \begin{array}{c} n/2 \\ \hline A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array} n/2 \qquad B = \begin{array}{c} n/2 \\ \hline B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{array} n/2$$

- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A, B) recursively calls matrix_multiplication (A_{11}, B_{11}) , matrix_multiplication (A_{12}, B_{21}) , ...
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$ • $T(n) = O(n^3)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$