Input: n points in plane: (z1,91), (72,92), - , (T, yr)
Output: the pair of points that are closest

67/75

Input: n points in plane: (z1,91), (72,92), - , (T, yr)
Output: the pair of points that are closest

67/75

Closest Pair

Input: n points in plane: (z1,y1), (¥2,92), " ; (Tn; Yn)
Output: the pair of points that are closest

@ Trivial algorithm: O(n?) running time

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line

@ Conquer: Solve two sub-instances recursively

Divide-and-Conquer Algorithm for Closest Pair

@ Divide: Divide the points into two halves via a vertical line
@ Conquer: Solve two sub-instances recursively

@ Combine: Check if there is a closer pair between left-half and
right-half

Divide-and-Conquer Algorithm for Closest Pair

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair
@ For each point, only need to consider O(1) boxes nearby

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair
@ For each point, only need to consider O(1) boxes nearby
@ time for combine = O(n) (many technicalities omitted)

Divide-and-Conquer Algorithm for Closest Pair

@ Each box contains at most one pair

@ For each point, only need to consider O(1) boxes nearby
@ time for combine = O(n) (many technicalities omitted)
@ Recurrence: T'(n) = 27T'(n/2) + O(n)

Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider O(1) boxes nearby
time for combine = O(n) (many technicalities omitted)
Recurrence: T'(n) = 2T (n/2) + O(n)

Running time: O(nlgn)

O(nlgn)-Time Algorithm for Convex Hull

O(nlgn)-Time Algorithm for Convex Hull

O(nlgn)-Time Algorithm for Convex Hull

O(nlgn)-Time Algorithm for Convex Hull

O(nlgn)-Time Algorithm for Convex Hull

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
1. for i< 1tondo

2 for j < 1ton do

3 Cli, j] 0

4: for £ < 1ton do

5 Cli, j] < CJi, j] + Ali, k] x Blk, j]

6:

Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication
Input: two n X n matrices A and B
Output: C = AB

Naive Algorithm: matrix-multiplication(A, B, n)
1. for i< 1tondo

2 for j < 1ton do

3 Cli, j] 0

4: for £ < 1ton do

5 Cli, j] < CJi, j] + Ali, k] x Blk, j]

6:

@ running time = O(n?)

Try to Use Divide-and-Conquer

n/2 n/2

Ay | A }H/Q B11 | B }H/Q
A= B

A21 A22 B21 B22
o (' — A1 B+ A1aBor A1 Bia + A2 B
A1 Bi1 + Aga By A9 Big + A Boo

e matrix_multiplication(A, B) recursively calls
matrix_multiplication(A1, By1), matrix_-multiplication(A12, Ba1),

Try to Use Divide-and-Conquer

n/2 n/2

Ay | A }H/Q B11 | B }H/Q
A= B

A21 A22 B21 B22

o (' — (AnBu + A12Bar A1 Bia + A1 B)

A By + A By A Bio + Ay Ba
e matrix_multiplication(A, B) recursively calls
matrix_multiplication(A1, By1), matrix_-multiplication(A12, Ba1),

@ Recurrence for running time: T'(n) = 8T(n/2) + O(n?)
e T(n) =0(n?

Strassen’s Algorithm

e T(n) =8T(n/2) + O(n?)
@ Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

e New recurrence: T'(n) = 7T(n/2) + O(n?)

Strassen’s Algorithm

e T(n)=8T(n/2) + O(n?)

@ Strassen’s Algorithm: improve the number of multiplications from
8 to 7!

e New recurrence: T'(n) = 7T(n/2) + O(n?)

e Solving Recurrence T'(n) = O(n'°827) = O(n?8%)

