Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

Closest Pair

Input: n points in plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
Output: the pair of points that are closest

- Trivial algorithm: $O\left(n^{2}\right)$ running time

Divide-and-Conquer Algorithm for Closest Pair

- Divide: Divide the points into two halves via a vertical line

Divide-and-Conquer Algorithm for Closest Pair

- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively

Divide-and-Conquer Algorithm for Closest Pair

- Divide: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- Combine: Check if there is a closer pair between left-half and right-half

Divide-and-Conquer Algorithm for Closest Pair

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $=O(n)$ (many technicalities omitted)

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $=O(n)$ (many technicalities omitted)
- Recurrence: $T(n)=2 T(n / 2)+O(n)$

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $=O(n)$ (many technicalities omitted)
- Recurrence: $T(n)=2 T(n / 2)+O(n)$
- Running time: $O(n \lg n)$

$O(n \lg n)$-Time Algorithm for Convex Hull

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C=A B$

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C=A B$
Naive Algorithm: matrix-multiplication (A, B, n)
1: for $i \leftarrow 1$ to n do
2: \quad for $j \leftarrow 1$ to n do
3: $\quad C[i, j] \leftarrow 0$
4: \quad for $k \leftarrow 1$ to n do
5:

$$
C[i, j] \leftarrow C[i, j]+A[i, k] \times B[k, j]
$$

6: return C

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C=A B$
Naive Algorithm: matrix-multiplication (A, B, n)
1: for $i \leftarrow 1$ to n do
2: \quad for $j \leftarrow 1$ to n do
3: $\quad C[i, j] \leftarrow 0$
4: \quad for $k \leftarrow 1$ to n do
5:

$$
C[i, j] \leftarrow C[i, j]+A[i, k] \times B[k, j]
$$

6: return C

- running time $=O\left(n^{3}\right)$

Try to Use Divide-and-Conquer

- $C=\left(\begin{array}{cc}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$
- matrix_multiplication (A, B) recursively calls matrix_multiplication $\left(A_{11}, B_{11}\right)$, matrix_multiplication $\left(A_{12}, B_{21}\right)$,

Try to Use Divide-and-Conquer

$$
\left.\left.A=\begin{array}{|c|c|}
\hline A_{11} & A_{12} \\
\hline A_{21} & A_{22} \\
\hline
\end{array}\right\} n / 2 \quad B=\begin{array}{|c|c|}
\hline B_{11} & B_{12} \\
\hline B_{21} & B_{22} \\
\hline
\end{array}\right\} n / 2
$$

- $C=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)$
- matrix_multiplication (A, B) recursively calls matrix_multiplication $\left(A_{11}, B_{11}\right)$, matrix_multiplication $\left(A_{12}, B_{21}\right)$,
- Recurrence for running time: $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- $T(n)=O\left(n^{3}\right)$

Strassen's Algorithm

- $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7 !
- New recurrence: $T(n)=7 T(n / 2)+O\left(n^{2}\right)$

Strassen's Algorithm

- $T(n)=8 T(n / 2)+O\left(n^{2}\right)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7 !
- New recurrence: $T(n)=7 T(n / 2)+O\left(n^{2}\right)$
- Solving Recurrence $T(n)=O\left(n^{\log _{2} 7}\right)=O\left(n^{2.808}\right)$

