Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi: V \to \{1, 2, 3 \cdots, n\}$, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function $\pi:V \to \{1,2,3\cdots,n\}$, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v=0$

topological-sort(G)

- 1: let $d_v \leftarrow 0$ for every $v \in V$
- 2: for every $v \in V$ do
- 3: **for** every u such that $(v, u) \in E$ **do**
- 4: $d_u \leftarrow d_u + 1$
- 5: $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
- 6: while $S \neq \emptyset$ do
- 7: $v \leftarrow \text{arbitrary vertex in } S, S \leftarrow S \setminus \{v\}$
- 8: $i \leftarrow i + 1, \ \pi(v) \leftarrow i$
- 9: **for** every u such that $(v, u) \in E$ **do**
- 10: $d_u \leftarrow d_u 1$
- 11: **if** $d_u = 0$ **then** add u to S
- 12: if i < n then output "not a DAG"
- ullet S can be represented using a queue or a stack
- Running time = O(n+m)

${\cal S}$ as a Queue or a Stack

DS	Queue	Stack
Initialization	$head \leftarrow 1, tail \leftarrow 0$	$top \leftarrow 0$
Non-Empty?	$head \le tail$	top > 0
Add(v)	$tail \leftarrow tail + 1 \\ S[tail] \leftarrow v$	$top \leftarrow top + 1 \\ S[top] \leftarrow v$
Retrieve v	$v \leftarrow S[head] \\ head \leftarrow head + 1$	$v \leftarrow S[top] \\ top \leftarrow top - 1$

	a	b	c	d	e	f	g
degree	0	1	1	1	2	1	3

	a	b	c	d	e	\int	g
degree	0	1	1	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	2	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	1	1	3

	a	b	c	d	e	f	g
degree	0	0	0	1	1	1	3

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

	a	b	c	d	e	f	g
degree	0	0	0	0	1	0	3

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	2

	a	b	c	d	e	f	g
degree	0	0	0	0	0	0	1

Outline

- Graphs
- Connectivity and Graph Traversal
 - Types of Graphs
- Bipartite Graphs
 - Testing Bipartiteness
- Topological Ordering
 - Applications: Word Ladder

Def. Word: A string formed by letters.

 $\mbox{\bf Def.}$ Adjacency words: Word A and B are adjacent if they differ in exactly one letter.

e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word and, in a series of steps, change or transform that word into another word.

Def. Word Ladder: Players start with one word and, in a series of steps, change or transform that word into another word.

 The objective is to make the change in the smallest number of steps, with each step involving changing a single letter of the word to create a new valid word.

Word Ladder Problem

Input: Two words S and T, a list of words $A = \{W_1, W_2, ..., W_k\}$.

Output: "The smallest word ladder" if we can change S to T by moving between adjacency words in $A \cup \{S, T\}$; Otherwise, "No word ladder".

- \bullet S="a e f g h", T = "d l m i h"
- $W_1=$ "a e f i h", $W_2=$ "a e m g h", $W_3=$ "d l f i h" $W_4=$ "s e f i h", $W_5=$ "a d f g h", $W_6=$ "d e m i h" $W_7=$ "d e f i h", $W_8=$ "d e m g h", $W_9=$ "s e m i h"

- \bullet S="a e f g h", T = "d l m i h"
- $W_1=$ "a e f i h", $W_2=$ "a e m g h", $W_3=$ "d l f i h" $W_4=$ "s e f i h", $W_5=$ "a d f g h", $W_6=$ "d e m i h" $W_7=$ "d e f i h", $W_8=$ "d e m g h", $W_9=$ "s e m i h"

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.
- ullet Hints: Given vertex v, check its nearest neighbor.

CSE 431/531B: Algorithm Analysis and Design (Fall 2023) Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

• However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

• However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

Design efficient algorithms to solve problems

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- f(n) is a polynomial if $f(n) = O(n^k)$ for some constant k > 0.
- convention: polynomial time = efficient

Goals of algorithm design

- Design efficient algorithms to solve problems
- Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

- Greedy Algorithms: shortest path problem
- Divide and Conquer: merge-sort, binary search
- Dynamic Programming: Fibonacci number

• Greedy algorithms are often for optimization problems.

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.
- Hard to see correctness. Mostly, it is not correct. E.g. $\min f(x)$

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.

Outline

- Toy Example: Box Packing
- 2 Interval Scheduling
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary

Box Packing

Input: n boxes of capacities c_1, c_2, \cdots, c_n m items of sizes s_1, s_2, \cdots, s_m Can put at most 1 item in a box Item j can be put into box i if $s_j \leq c_i$

Output: A way to put as many items as possible in the boxes.

Box Packing

Input: n boxes of capacities c_1, c_2, \cdots, c_n

m items of sizes s_1, s_2, \cdots, s_m

Can put at most 1 item in a box

Item j can be put into box i if $s_j \leq c_i$

Output: A way to put as many items as possible in the boxes.

Example:

• Box capacities: 60, 40, 25, 15, 12

• Item sizes: 45, 42, 20, 19, 16

• Can put 3 items in boxes: $45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25$

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

• Q: Take box 1. Which item should we put in box 1?

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

• Intuition: putting the item gives us the easiest residual problem.

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is "safe": There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
- formal proof via exchanging argument:

Proof.

• Let j =largest item that box 1 can hold.

Proof.

- Let j =largest item that box 1 can hold.
- ullet Take any optimum solution S. If j is put into Box 1 in S, done.

Proof.

- Let j = largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- ullet Otherwise, assume this is what happens in S:

Proof.

- Let j =largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- ullet Otherwise, assume this is what happens in S:

• $s_{i'} \leq s_i$, and swapping gives another solution S'

Proof.

- Let j =largest item that box 1 can hold.
- ullet Take any optimum solution S. If j is put into Box 1 in S, done.
- ullet Otherwise, assume this is what happens in S:

- $s_{j'} \leq s_j$, and swapping gives another solution S'
- S' is also an optimum solution. In S', j is put into Box 1.

• Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

 Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

 Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe"
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
- Trivial: we decided to put Item j into Box 1, and the remaining instance is obtained by removing Item j and Box 1.

Generic Greedy Algorithm

- 1: while the instance is non-trivial do
- make the choice using the greedy strategy
- 3: reduce the instance

Greedy Algorithm for Box Packing

- 1: $T \leftarrow \{1, 2, 3, \cdots, m\}$
- 2: **for** $i \leftarrow 1$ to n **do**
- 3: **if** some item in T can be put into box i **then**
- 4: $j \leftarrow$ the largest item in T that can be put into box i
- 5: print("put item j in box i")
- 6: $T \leftarrow T \setminus \{j\}$