Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V' — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V, E)
Output: 1-to-1 function 7 : V' — {1,2,3--- ,n}, so that
o if (u,v) € E then 7(u) < 7(v)

AN

%%

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
WV

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
A

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ﬁ‘5‘

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

ﬁ‘5‘

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

AN
VA

/

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible? J

Topological Ordering

@ Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?)

A:
@ Use linked-lists of outgoing edges
@ Maintain the in-degree d,, of vertices

@ Maintain a queue (or stack) of vertices v with d, =0

topological-sort(G)
1: letd, < 0 foreveryv e V
2: for every v € V do
3: for every u such that (v,u) € E do
dy +— d,+1
: S+ {v:d,=0},i«<0
while S # () do
v < arbitrary vertex in S, S < S\ {v}
i i+1, m(v) 1
for every u such that (v,u) € E do
10: dy <+ d, —1
11: if d, =0 then add uto S
12: if ¢ < n then output “not a DAG"

© o N g ks

@ S can be represented using a queue or a stack
@ Running time = O(n + m)

S as a Queue or a Stack

DS Queue Stack

Initialization | head < 1, tail < 0 | top <+ 0

Non-Empty? | head < tail top > 0
Add(v) tail < tail + 1 top < top+1
Sltail] < v Sltop] < v
Retrieve v | v <= S[head] v < Sltop]

head < head + 1 top < top — 1

@ Topological Ordering
@ Applications: Word Ladder

Def. Word: A string formed by letters. |

Def. Adjacency words: Word A and B are adjacent if they differ in
exactly one letter. J

e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word and, in a series of
steps, change or transform that word into another word. J

Def. Word Ladder: Players start with one word and, in a series of
steps, change or transform that word into another word.

@ The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.

Word Ladder Problem
Input: Two words S and 7, a list of words A = {W;, W, ..., Wi }.

Output: “ The smallest word ladder” if we can change S to T' by
moving between adjacency words in AU {S,T};
Otherwise, “No word ladder” .

Example:

@ S="aefgh", T="dImih"

o Wi="aefih" Wo="aemgh”, Ws="dIfih"
Wy="sefih”, Wy="adfgh", Wsg="demih”
Wr="defih", Wg="demgh”, Wog="semih”

Example:

@ S="aefgh", T="dlmih"

o Wi="aefih", Wo="aemgh", Ws="dIfih"
Wy="sefih", Ws="adfgh", Wg="demih”
Wr="defih" Wg="demgh", Wog="semih”

o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.

o

@ Each vertex corresponds to a word.

@ Two vertices are adjacent if the corresponding words are adjacent.

@ Hints: Given vertex v, check its nearest neighbor.

CSE 431/531B: Algorithm Analysis and Design (Fall 2023)

Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
v

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design

@ Design efficient algorithms to solve problems

Def. In an optimization problem, our goal of is to find a valid
solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

@ However, trivial algorithm often runs in exponential time, as the
number of potential solutions is often exponentially large.

@ f(n) is a polynomial if f(n) = O(n*) for some constant k > 0.

@ convention: polynomial time = efficient

Goals of algorithm design
@ Design efficient algorithms to solve problems

© Design more efficient algorithms to solve problems

Common Paradigms for Algorithm Design

@ Greedy Algorithms: shortest path problem
@ Divide and Conquer: merge-sort, binary search

@ Dynamic Programming: Fibonacci number

Greedy algorithm properties

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

@ They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

Greedy algorithm properties

@ Greedy algorithms are often for optimization problems.

@ They often run in polynomial time due to their simplicity: easy to
come up with, easy to analyze running time.

@ Hard to see correctness. Mostly, it is not correct. E.g. min f(z)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
e Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable
strategy

Analysis of Greedy Algorithm
e Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Def. A strategy is safe: there is always an optimum solution that
agrees with the decision made according to the strategy.

o Toy Example: Box Packing

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢y
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Box Packing
Input: n boxes of capacities ¢y, co, -+ , ¢y
m items of sizes s1, 82, , Sm
Can put at most 1 item in a box
Item j can be put into box ¢ if s5; < ¢;

Output: A way to put as many items as possible in the boxes.

Example:
@ Box capacities: 60, 40, 25, 15, 12
@ ltem sizes: 45, 42, 20, 19, 16

e Can put 3 items in boxes: 45 — 60,20 — 40,19 — 25

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
o Q: Take box 1. Which item should we put in box 1?

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Designing a Reasonable Strategy for Box Packing
@ Q: Take box 1. Which item should we put in box 17
@ A: The item of the largest size that can be put into the box.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

Lemma The strategy that put into box 1 the largest item it can
hold is “safe”: There is an optimum solution in which box 1 contains
the largest item it can hold.

@ Intuition: putting the item gives us the easiest residual problem.

e formal proof via exchanging argument:

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold. J

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

Lemma There is an optimum solution in which box 1 contains the

largest item it can hold.

Proof.

@ Let j = largest item that box 1 can hold.

@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S

box 1

S

O O O

item 7

&

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

L4 N I I R P,

o0 O O

item 5/ item j

@ s < s;, and swapping gives another solution .5’

Lemma There is an optimum solution in which box 1 contains the
largest item it can hold.

Proof.
@ Let j = largest item that box 1 can hold.
@ Take any optimum solution S. If j is put into Box 1 in S, done.

@ Otherwise, assume this is what happens in S
box 1

L4 N I I R P,

o0 O O

item 5/ item j

@ s < s;, and swapping gives another solution .5’

e S is also an optimum solution. In S’, j is put into Box 1.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
o Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

@ Notice that the exchanging operation is only for the sake of
analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm
o Safety: Prove that the reasonable strategy is “safe”

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem

@ Trivial: we decided to put Item j into Box 1, and the remaining
instance is obtained by removing Item 7 and Box 1.

Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1. T+ {1,2,3,--- ,m}
2: for i < 1 ton do
3: if some item in T can be put into box ¢ then
7 < the largest item in 7" that can be put into box i
print(“put item j in box ")
T T\ {j}

e & g2

