
CSE 431/531B: Algorithm Analysis and Design (Fall 2023)

Introduction and Syllabus

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Bu↵alo

2/76

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

3/76

CSE 431/531 B: Algorithm Analysis and Design

Course Webpage (contains schedule, policies, and slides):
https://cse.buffalo.edu/~kelinluo/teaching/cse431B:
531B-fall23/index.html

Please sign up course on Piazza via link
https://piazza.com/buffalo/fall2023/cse431531b on
course webpage
- homeworks, solutions, announcements, polls, asking/answering
questions

Acknowledgement: The course design and information primarily draw
inspiration from Prof. Shi Li’s Algorithm Analysis and Design course
in Fall 2022.

https://cse.buffalo.edu/~kelinluo/teaching/cse431B:531B-fall23/index.html
https://cse.buffalo.edu/~kelinluo/teaching/cse431B:531B-fall23/index.html
https://piazza.com/buffalo/fall2023/cse431531b

4/76

CSE 431/531B: Algorithm Analysis and Design

Time & Location : Mon-Wed-Fri, 2:00pm - 2:50pm, Norton 190

Instructor: Kelin Luo, kelinluo@bu↵alo.edu

TAs:
Yifan Yang, yyang99@bu↵alo.edu

Sayem Khan, skhan61@bu↵alo.edu

Yuxin Liu, yuxinliu@bu↵alo.edu

O�ce hour

5/76

You should already have/know:

Mathematical Background
basic reasoning skills, inductive proofs

Basic data Structures
linked lists, arrays

stacks, queues

Some Programming Experience
e.g. Python, C, C++ or Java

5/76

You should already have/know:

Mathematical Background
basic reasoning skills, inductive proofs

Basic data Structures
linked lists, arrays

stacks, queues

Some Programming Experience
e.g. Python, C, C++ or Java

5/76

You should already have/know:

Mathematical Background
basic reasoning skills, inductive proofs

Basic data Structures
linked lists, arrays

stacks, queues

Some Programming Experience
e.g. Python, C, C++ or Java

5/76

You should already have/know:

Mathematical Background
basic reasoning skills, inductive proofs

Basic data Structures
linked lists, arrays

stacks, queues

Some Programming Experience
e.g. Python, C, C++ or Java

6/76

You Will Learn

Classic algorithms for classic problems
Sorting, shortest paths, minimum spanning tree, · · ·

How to analyze algorithms
Correctness

Running time (e�ciency)

Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

· · ·

NP-completeness

6/76

You Will Learn

Classic algorithms for classic problems
Sorting, shortest paths, minimum spanning tree, · · ·

How to analyze algorithms
Correctness

Running time (e�ciency)

Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

· · ·

NP-completeness

6/76

You Will Learn

Classic algorithms for classic problems
Sorting, shortest paths, minimum spanning tree, · · ·

How to analyze algorithms
Correctness

Running time (e�ciency)

Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

· · ·

NP-completeness

6/76

You Will Learn

Classic algorithms for classic problems
Sorting, shortest paths, minimum spanning tree, · · ·

How to analyze algorithms
Correctness

Running time (e�ciency)

Meta techniques to design algorithms
Greedy algorithms

Divide and conquer

Dynamic programming

· · ·

NP-completeness

7/76

Tentative Schedule

50 Minutes/Lecture ⇥ 41 Lectures

Introduction 3 lectures
Graph Basics 4 lectures

Greedy Algorithms 6 lectures
Divide and Conquer 6 lectures

Dynamic Programming 8 lectures
Graph Algorithms 7 lectures
NP-Completeness 4 lectures

Final Review 3 lectures

8/76

Textbook

Textbook (Highly Recommended):

Algorithm Design, 1st Edition, by
Jon Kleinberg and Eva Tardos

Other Reference Books

Introduction to Algorithms, Third Edition, Thomas Cormen,
Charles Leiserson, Rondald Rivest, Cli↵ord Stein

9/76

Reading Before Classes

Highly recommended: read the correspondent sections from the
textbook (or reference book) before classes
Sections for each lecture can be found on the course webpage.

Slides are posted on course webpage. They may get updated after
the classes.

In last lecture of a major topic (Greedy Algorithms, Divide and
Conquer, Dynamic Programming, Graph Algorithms), I will discuss
exercise problems, which will be posted on the course webpage
before class.

10/76

Grading

5% for participation
In-class discussions or quizzes will be given randomly. (We choose

the best 5 scores out of 8-10 quizzes.)

40% for theory homeworks
8 points ⇥ 5 theory homeworks (We choose the best 5 scores out of

6 homeworks.) (Recommendation: typed submissions, e.g. latex.)

20% for programming projects
10 points ⇥ 2 programming assignments

35% for final exam (closed-book, closed-note)

11/76

For Homeworks, You Are Allowed to

Use course materials (textbook, reference books, lecture notes,
etc)

Post questions on Piazza

Ask me or TAs for hints

Collaborate with classmates
Think about each problem for enough time before discussions

Must write down solutions on your own, in your own words

Write down names of students you collaborated with

12/76

For Homeworks, You Are Not Allowed to

Use external resources
Can’t Google or ask questions online for solutions

Can’t read posted solutions from other algorithm course webpages

Copy solutions from other students

Use of Artificial Intelligence Technologies like OpenAI’s ChatGPT,
Google Bard, and AI models within search interfaces like Google
or Bing, etc.

13/76

For Programming Projects

Use Python3

Need to implement the algorithms by yourself

Can not copy codes from others or the Internet

We use Moss (https://theory.stanford.edu/~aiken/moss/)
to detect similarity of programs

https://theory.stanford.edu/~aiken/moss/

14/76

Late Policy

No late submissions will be accepted.

11:59PM EST. Please submit it before the deadline.

15/76

Academic Integrity (AI) Policy for the Course
minor violation:
0 score for the involved homework/prog. assignment, and

1-letter grade down

2 minor violations = 1 major violation
failure for the course

case will be reported to the department and university

further sanctions may include a dishonesty mark on transcript or

expulsion from university

15/76

Academic Integrity (AI) Policy for the Course
minor violation:
0 score for the involved homework/prog. assignment, and

1-letter grade down

2 minor violations = 1 major violation
failure for the course

case will be reported to the department and university

further sanctions may include a dishonesty mark on transcript or

expulsion from university

16/76

Course Sign up

Last Day to Drop/Add a Course: September 05

Resign Date: November 10

Questions, please go to Piazza!

17/76

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

18/76

Outline

1 Syllabus

2 Introduction
What is an Algorithm?
Example: Insertion Sort
Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times

19/76

What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite e↵ective
procedure, with some input and some output.

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the
correct output for any given input.

19/76

What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite e↵ective
procedure, with some input and some output.

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the
correct output for any given input.

20/76

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)! (210, 60)! (60, 30)! (30, 0)

20/76

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)! (210, 60)! (60, 30)! (30, 0)

20/76

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)! (210, 60)! (60, 30)! (30, 0)

20/76

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)! (210, 60)! (60, 30)! (30, 0)

20/76

Examples

Greatest Common Divisor
Input: two integers a, b > 0

Output: the greatest common divisor of a and b

Example:
Input: 210, 270

Output: 30

Algorithm: Euclidean algorithm

gcd(270, 210) = gcd(210, 270 mod 210) = gcd(210, 60)

(270, 210)! (210, 60)! (60, 30)! (30, 0)

21/76

Examples

Sorting
Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a01, a
0
2, · · · , a0n) of the input sequence such

that a01 a
0
2 · · · a

0
n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .

21/76

Examples

Sorting
Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a01, a
0
2, · · · , a0n) of the input sequence such

that a01 a
0
2 · · · a

0
n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .

21/76

Examples

Sorting
Input: sequence of n numbers (a1, a2, · · · , an)

Output: a permutation (a01, a
0
2, · · · , a0n) of the input sequence such

that a01 a
0
2 · · · a

0
n

Example:
Input: 53, 12, 35, 21, 59, 15

Output: 12, 15, 21, 35, 53, 59

Algorithms: insertion sort, merge sort, quicksort, . . .

22/76

Examples

Shortest Path
Input: directed graph G = (V,E), s, t 2 V

Output: a shortest path from s to t in G

Algorithm: Dijkstra’s algorithm

22/76

Examples

Shortest Path
Input: directed graph G = (V,E), s, t 2 V

Output: a shortest path from s to t in G

16 1

1 5 4 2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm

22/76

Examples

Shortest Path
Input: directed graph G = (V,E), s, t 2 V

Output: a shortest path from s to t in G

16 1

1 5 4 2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm

22/76

Examples

Shortest Path
Input: directed graph G = (V,E), s, t 2 V

Output: a shortest path from s to t in G

16 1

1 5 4 2

104

3

s

333 t

Algorithm: Dijkstra’s algorithm

23/76

Algorithm = Computer Program?

Algorithm: “abstract”, can be specified using computer program,
English, pseudo-codes or flow charts.

Computer program: “concrete”, implementation of algorithm,
using a particular programming language

24/76

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)
1: while b > 0 do

2: (a, b) (b, a mod b)

3: return a

Python program:

def euclidean(a: int, b: int):

c = 0

while b > 0:

c = b

b = a % b

a = c

return a

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

25/76

Theoretical Analysis of Algorithms

Main focus: correctness, running time (e�ciency)

Sometimes: memory usage

Not covered in the course: engineering side
extensibility

modularity

object-oriented model

user-friendliness (e.g, GUI)

. . .

Why is it important to study the running time (e�ciency) of an
algorithm?

1 feasible vs. infeasible

2 e�cient algorithms: less engineering tricks needed, can use languages

aiming for easy programming (e.g, python)

3 fundamental

4 it is fun!

