Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Shortest Path

Input: directed graph G = (V, E), $s, t \in V$

Output: a shortest path from s to t in G

Algorithm: Dijkstra's algorithm . . .

Shortest Path

Input: directed graph G=(V,E) (may have negative edges), $s,t\in V$

Shortest Path

Input: directed graph G=(V,E) (may have negative edges),

 $s,t \in V$

Shortest Path

Input: directed graph G=(V,E) (may have negative edges),

 $s,t \in V$

Shortest Path

Input: directed graph G=(V,E) (may have negative edges),

 $s, t \in V$

Output: a shortest path from s to t in G

Algorithm: Bellman-Ford algorithm, Floyd-Warshall . . .

Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language

Pseudo-Code

Pseudo-Code:

Euclidean(a, b)

- 1: while b > 0 do
- 2: $(a,b) \leftarrow (b, a \mod b)$
- 3: return a

Python program:

- def euclidean(a: int, b: int):
 - c = 0
- while b > 0:
- c = b
 - $\mathsf{b} = \mathsf{a}~\%~\mathsf{b}$
 - $\mathsf{a}=\mathsf{c}$
- return a

•

• Main focus: correctness, running time (efficiency)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - ...

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - ...
- Why is it important to study the running time (efficiency) of an algorithm?

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
 - efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
- efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
- fundamental

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g, GUI)
 - . . .
- Why is it important to study the running time (efficiency) of an algorithm?
 - feasible vs. infeasible
- efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
- fundamental
- it is fun!

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Sorting Problem

Input: sequence of n numbers (a_1, a_2, \dots, a_n)

Output: a permutation $(a'_1, a'_2, \cdots, a'_n)$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Example:

• Input: 53, 12, 35, 21, 59, 15

• Output: 12, 15, 21, 35, 53, 59

Insertion-Sort

• At the end of j-th iteration, the first j numbers are sorted.

```
iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
```

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i-1$
- 7: $A[i+1] \leftarrow key$

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 53 59 15

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: for $j \leftarrow 2$ to n do
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35

53

59

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j 1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35
 - -

53

59

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 53
 - ,

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 35 53

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 35 35

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: for $j \leftarrow 2$ to n do
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 35 35
 - **†**
 - i

59

- $\bullet \ \, \mathsf{Input:} \ \, 53,12,35,21,59,15$
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $j \leftarrow 2$ to n **do**
- 2: $key \leftarrow A[j]$
- 3: $i \leftarrow j-1$
- 4: while i > 0 and A[i] > key do
- 5: $A[i+1] \leftarrow A[i]$
- 6: $i \leftarrow i 1$
- 7: $A[i+1] \leftarrow key$

- j = 6
- key = 15
- 12 21 21 35
 - **†**
 - i

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- $i \leftarrow i 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- 21 21 35

59

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

- 1: **for** $i \leftarrow 2$ to n **do**
- $key \leftarrow A[j]$ 2:
- 3: $i \leftarrow j 1$
- while i > 0 and A[i] > key do 4:
- $A[i+1] \leftarrow A[i]$ 5:
- $i \leftarrow i 1$ 6:
- $A[i+1] \leftarrow key$ 7:

- j = 6
- key = 15
- **15** 21 35

59

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Analysis of Insertion Sort

- Correctness
- Running time

Correctness of Insertion Sort

• Invariant: after iteration j of outer loop, A[1..j] is the sorted array for the original A[1..j].

```
after j=1:53,12,35,21,59,15

after j=2:12,53,35,21,59,15

after j=3:12,35,53,21,59,15

after j=4:12,21,35,53,59,15

after j=5:12,21,35,53,59,15

after j=6:12,15,21,35,53,59
```

Analyzing Running Time of Insertion Sort

• Q1: what is the size of input?

- Q1: what is the size of input?
- A1: Running time as the function of size

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
 - Sorting problem: # integers,
 - Greatest common divisor: total length of two integers
 - Shortest path in a graph: # edges in graph
- Q2: Which input?
 - For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
 - \bullet Running time for size n= worst running time over all possible arrays of length n

- Q3: How fast is the computer?
- Q4: Programming language?

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!

Important idea: asymptotic analysis

 Focus on growth of running-time as a function, not any particular value.

- Ignoring lower order terms
- Ignoring leading constant

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

- Ignoring lower order terms
- Ignoring leading constant

•
$$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$$

•
$$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$$

•
$$n^2/100 - 3n + 10 \Rightarrow n^2/100 \Rightarrow n^2$$

•
$$n^2/100 - 3n + 10 = O(n^2)$$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 = O(n^2)$

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - program 1 requires 10 instructions, or 10^{-8} seconds
 - \bullet program 2 requires 2 instructions, or 10^{-9} seconds

- $3n^3 + 2n^2 18n + 1028 = O(n^3)$
- $n^2/100 3n + 10 = O(n^2)$

O-notation allows us to ignore

- architecture of computer
- programming language
- how we measure the running time: seconds or # instructions?
- to execute $a \leftarrow b + c$:
 - program 1 requires 10 instructions, or 10^{-8} seconds
 - \bullet program 2 requires 2 instructions, or 10^{-9} seconds
 - \bullet they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation

- Algorithm 1 runs in time $O(n^2)$
- ullet Algorithm 2 runs in time O(n)

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- ullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4

- Algorithm 1 runs in time $O(n^2)$
- Algorithm 2 runs in time O(n)
- ullet Does not tell which algorithm is faster for a specific n!
- ullet Algorithm 2 will eventually beat algorithm 1 as n increases.
- ullet For Algorithm 1: if we increase n by a factor of 2, running time increases by a factor of 4
- ullet For Algorithm 2: if we increase n by a factor of 2, running time increases by a factor of 2

```
insertion-sort (A, n)

1: for j \leftarrow 2 to n do

2: key \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > key do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: A[i+1] \leftarrow key
```

```
insertion-sort (A, n)

1: for j \leftarrow 2 to n do

2: key \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > key do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: A[i+1] \leftarrow key
```

• Worst-case running time for iteration j of the outer loop?

insertion-sort(A, n)

```
1: for j \leftarrow 2 to n do
2: key \leftarrow A[j]
3: i \leftarrow j - 1
4: while i > 0 and A[i] > key do
5: A[i+1] \leftarrow A[i]
6: i \leftarrow i - 1
7: A[i+1] \leftarrow key
```

• Worst-case running time for iteration j of the outer loop? Answer: O(j)

insertion-sort(A, n)

```
1: for j \leftarrow 2 to n do
2: key \leftarrow A[j]
3: i \leftarrow j - 1
4: while i > 0 and A[i] > key do
5: A[i+1] \leftarrow A[i]
6: i \leftarrow i - 1
7: A[i+1] \leftarrow key
```

- Worst-case running time for iteration j of the outer loop? Answer: O(j)
- Total running time = $\sum_{j=2}^{n} O(j) = O(\sum_{j=2}^{n} j)$ = $O(\frac{n(n+1)}{2} - 1) = O(n^2)$

- Random-Access Machine (RAM) model
 - \bullet reading and writing A[j] takes O(1) time

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c,n^c]$, it is convenient to assume this takes O(1) time.

- Random-Access Machine (RAM) model
 - reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?

- Random-Access Machine (RAM) model
 - ullet reading and writing A[j] takes O(1) time
- \bullet Basic operations such as addition, subtraction and multiplication take O(1) time
- Each integer (word) has $c \log n$ bits, $c \ge 1$ large enough
 - Reason: often we need to read the integer n and handle integers within range $[-n^c, n^c]$, it is convenient to assume this takes O(1) time.
- What is the precision of real numbers?
 Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time

Outline

- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- Common Running times

Asymptotically Positive Functions

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

• $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0

Asymptotically Positive Functions

Def. $f: \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have f(n) > 0
- In other words, f(n) is positive for large enough n.
- $n^2 n 30$ Yes
- $2^n n^{20}$ Yes
- $100n n^2/10 + 50$?
- We only consider asymptotically positive functions.

$$O\text{-Notation}$$
 For a function $g(n)$,
$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

```
O	ext{-Notation} For a function g(n), O(g(n)) = \left\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \right. \\ \left. f(n) \leq cg(n), \forall n \geq n_0 \right\}.
```

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

$$O\text{-Notation For a function }g(n),$$

$$O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that}$$

$$f(n) \leq cg(n), \forall n \geq n_0\big\}.$$

• In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.

$$O\textbf{-Notation} \ \ \text{For a function} \ g(n),$$

$$O(g(n)) = \left\{ \text{function} \ f: \exists c>0, n_0>0 \ \text{such that} \right.$$

$$f(n) \leq cg(n), \forall n \geq n_0 \right\}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

$$\begin{aligned} O\text{-Notation} \ \ &\text{For a function} \ g(n), \\ O(g(n)) &= \big\{ \text{function} \ f: \exists c>0, n_0>0 \ \text{such that} \\ f(n) &\leq cg(n), \forall n\geq n_0 \big\}. \end{aligned}$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c > 0 and every large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

Proof.

Let
$$c=4$$
 and $n_0=50$, for every $n>n_0=50$, we have,
$$3n^2+2n-c(n^2-10n)=3n^2+2n-4(n^2-10n)$$

$$=-n^2+42n\leq 0.$$

$$3n^2+2n\leq c(n^2-10n)$$

O-Notation For a function g(n), $O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that}$ $f(n) \leq cg(n), \forall n \geq n_0\big\}.$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$

O-Notation For a function g(n), $O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$

O-Notation For a function g(n), $O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that}$ $f(n) \leq cg(n), \forall n \geq n_0\big\}.$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$

$\label{eq:one-of-Notation} \begin{array}{l} O\text{-Notation} \ \ For \ \mbox{a function} \ \ g(n), \\ O(g(n)) = \left\{ \mbox{function} \ \ f: \ \exists c>0, n_0>0 \ \mbox{such that} \right. \\ \left. f(n) \leq cg(n), \forall n \geq n_0 \right\}. \end{array}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$

O-Notation For a function g(n),

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$
- ? $n^3 \notin O(10n^2)$

O-Notation For a function g(n),

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$
- ? $n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		