## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$

## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E), s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


- Algorithm: Dijkstra's algorithm ...


## Examples

## Shortest Path

Input: directed graph $G=(V, E)$ (may have negative edges), $s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$

## Examples

## Shortest Path

Input: directed graph $G=(V, E)$ (may have negative edges), $s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E)$ (may have negative edges), $s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


## Examples

## Shortest Path

Input: directed graph $G=(V, E)$ (may have negative edges), $s, t \in V$
Output: a shortest path from $s$ to $t$ in $G$


- Algorithm: Bellman-Ford algorithm, Floyd-Warshall ...


## Algorithm = Computer Program?

- Algorithm: "abstract", can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: "concrete", implementation of algorithm, using a particular programming language


## Pseudo-Code

Python program:

## Pseudo-Code:

## Euclidean $(a, b)$

1: while $b>0$ do
2: $\quad(a, b) \leftarrow(b, a \bmod b)$
3: return $a$

- def euclidean(a: int, b: int):
- $\mathrm{c}=0$
- while $\mathrm{b}>0$ :
- $\quad \mathrm{c}=\mathrm{b}$
$\mathrm{b}=\mathrm{a} \% \mathrm{~b}$
$\mathrm{a}=\mathrm{c}$
return a


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- . .


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
(3) fundamental


## Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g, GUI)
- Why is it important to study the running time (efficiency) of an algorithm?
(1) feasible vs. infeasible
(2) efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g, python)
(3) fundamental
(1) it is fun!


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort


## (3) Asymptotic Notations

## 4 Common Running times

## Sorting Problem

Input: sequence of $n$ numbers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
Output: a permutation $\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)$ of the input sequence such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$

## Example:

- Input: $53,12,35,21,59,15$
- Output: $12,15,21,35,53,59$


## Insertion-Sort

- At the end of $j$-th iteration, the first $j$ numbers are sorted.

$$
\text { iteration 1: } 53,12,35,21,59,15
$$

$$
\text { iteration } 2: 12,53,35,21,59,15
$$

$$
\text { iteration 3: } 12,35,53,21,59,15
$$

$$
\text { iteration } 4: 12,21,35,53,59,15
$$

$$
\text { iteration } 5: 12,21,35,53,59,15
$$

$$
\text { iteration 6: } 12,15,21,35,53,59
$$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$


## insertion-sort $(A, n)$

1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$

## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 15\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 59\end{array}$



## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 59 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 53 & 53 & 59\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 35 & 53 & 59\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- key $=15$
$\begin{array}{llllll}12 & 21 & 35 & 35 & 53 & 59\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 21 & 21 & 35 & 53 & 59\end{array}$ $\uparrow$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 21 & 21 & 35 & 53 & 59\end{array}$


## Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: $12,15,21,35,53,59$
insertion-sort $(A, n)$
1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6: $\quad i \leftarrow i-1$
7: $\quad A[i+1] \leftarrow k e y$
- $j=6$
- $k e y=15$
$\begin{array}{llllll}12 & 15 & 21 & 35 & 53 & 59\end{array}$


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort


## (3) Asymptotic Notations

## 4 Common Running times

## Analysis of Insertion Sort

- Correctness
- Running time


## Correctness of Insertion Sort

- Invariant: after iteration $j$ of outer loop, $A[1 . . j]$ is the sorted array for the original $A[1 . . j]$.

$$
\begin{aligned}
& \text { after } j=1: 53,12,35,21,59,15 \\
& \text { after } j=2: 12,53,35,21,59,15 \\
& \text { after } j=3: 12,35,53,21,59,15 \\
& \text { after } j=4: 12,21,35,53,59,15 \\
& \text { after } j=5: 12,21,35,53,59,15 \\
& \text { after } j=6: 12,15,21,35,53,59
\end{aligned}
$$

## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph
- Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.


## Analyzing Running Time of Insertion Sort

- Q1: what is the size of input?
- A1: Running time as the function of size
- possible definition of size :
- Sorting problem: \# integers,
- Greatest common divisor: total length of two integers
- Shortest path in a graph: \# edges in graph
- Q2: Which input?
- For the insertion sort algorithm: if input array is already sorted in ascending order, then algorithm runs much faster than when it is sorted in descending order.
- A2: Worst-case analysis:
- Running time for size $n=$ worst running time over all possible arrays of length $n$


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!


## Analyzing Running Time of Insertion Sort

- Q3: How fast is the computer?
- Q4: Programming language?
- A: They do not matter!


## Important idea: asymptotic analysis

- Focus on growth of running-time as a function, not any particular value.


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10 \Rightarrow n^{2} / 100 \Rightarrow n^{2}$


## Asymptotic Analysis: $O$-notation

Informal way to define $O$-notation:

- Ignoring lower order terms
- Ignoring leading constant
- $3 n^{3}+2 n^{2}-18 n+1028 \Rightarrow 3 n^{3} \Rightarrow n^{3}$
- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10 \Rightarrow n^{2} / 100 \Rightarrow n^{2}$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
- to execute $a \leftarrow b+c$ :
- program 1 requires 10 instructions, or $10^{-8}$ seconds
- program 2 requires 2 instructions, or $10^{-9}$ seconds


## Asymptotic Analysis: $O$-notation

- $3 n^{3}+2 n^{2}-18 n+1028=O\left(n^{3}\right)$
- $n^{2} / 100-3 n+10=O\left(n^{2}\right)$
$O$-notation allows us to ignore
- architecture of computer
- programming language
- how we measure the running time: seconds or \# instructions?
- to execute $a \leftarrow b+c$ :
- program 1 requires 10 instructions, or $10^{-8}$ seconds
- program 2 requires 2 instructions, or $10^{-9}$ seconds
- they only change by a constant in the running time, which will be hidden by the $O(\cdot)$ notation


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !
- Algorithm 2 will eventually beat algorithm 1 as $n$ increases.


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !
- Algorithm 2 will eventually beat algorithm 1 as $n$ increases.
- For Algorithm 1: if we increase $n$ by a factor of 2 , running time increases by a factor of 4


## Asymptotic Analysis: $O$-notation

- Algorithm 1 runs in time $O\left(n^{2}\right)$
- Algorithm 2 runs in time $O(n)$
- Does not tell which algorithm is faster for a specific $n$ !
- Algorithm 2 will eventually beat algorithm 1 as $n$ increases.
- For Algorithm 1: if we increase $n$ by a factor of 2 , running time increases by a factor of 4
- For Algorithm 2: if we increase $n$ by a factor of 2, running time increases by a factor of 2


## Asymptotic Analysis of Insertion Sort

## insertion-sort $(A, n)$

1: for $j \leftarrow 2$ to $n$ do
2: $\quad$ key $\leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5: $\quad A[i+1] \leftarrow A[i]$
6:

$$
i \leftarrow i-1
$$

7: $\quad A[i+1] \leftarrow k e y$

## Asymptotic Analysis of Insertion Sort

```
insertion-sort( }A,n
    1: for }j\leftarrow2\mathrm{ to }n\mathrm{ do
    2: }\quadkey\leftarrowA[j
    3: }\quadi\leftarrowj-
    4: while i>0 and A[i]>key do
    5: }\quadA[i+1]\leftarrowA[i
    6: }\quadi\leftarrowi-
    7:}\quadA[i+1]\leftarrowke
```

- Worst-case running time for iteration $j$ of the outer loop?


## Asymptotic Analysis of Insertion Sort

```
insertion-sort( }A,n
    1: for }j\leftarrow2\mathrm{ to }n\mathrm{ do
    2: }\quadkey\leftarrowA[j
    3: }\quadi\leftarrowj-
    4: while }i>0\mathrm{ and }A[i]>key d
    5:
    6: }\quadi\leftarrowi-
    7:}\quadA[i+1]\leftarrowke
```

- Worst-case running time for iteration $j$ of the outer loop? Answer: $O(j)$


## Asymptotic Analysis of Insertion Sort

## insertion-sort $(A, n)$

1: for $j \leftarrow 2$ to $n$ do
2: $\quad k e y \leftarrow A[j]$
3: $\quad i \leftarrow j-1$
4: $\quad$ while $i>0$ and $A[i]>k e y$ do
5:
6:

$$
A[i+1] \leftarrow A[i]
$$

$$
i \leftarrow i-1
$$

7: $\quad A[i+1] \leftarrow k e y$

- Worst-case running time for iteration $j$ of the outer loop? Answer: $O(j)$
- Total running time $=\sum_{j=2}^{n} O(j)=O\left(\sum_{j=2}^{n} j\right)$
$=O\left(\frac{n(n+1)}{2}-1\right)=O\left(n^{2}\right)$


## Computation Model

## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers?


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?


## Computation Model

- Random-Access Machine (RAM) model
- reading and writing $A[j]$ takes $O(1)$ time
- Basic operations such as addition, subtraction and multiplication take $O(1)$ time
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Reason: often we need to read the integer $n$ and handle integers within range $\left[-n^{c}, n^{c}\right]$, it is convenient to assume this takes $O(1)$ time.
- What is the precision of real numbers? Most of the time, we only consider integers.
- Can we do better than insertion sort asymptotically?
- Yes: merge sort, quicksort and heap sort take $O(n \log n)$ time


## Outline

## (1) Syllabus

(2) Introduction

- What is an Algorithm?
- Example: Insertion Sort
- Analysis of Insertion Sort
(3) Asymptotic Notations

4 Common Running times

## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20}$


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ?


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ? No


## Asymptotically Positive Functions

Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_{0}>0$ such that $\forall n>n_{0}$ we have $f(n)>0$
- In other words, $f(n)$ is positive for large enough $n$.
- $n^{2}-n-30 \quad$ Yes
- $2^{n}-n^{20} \quad$ Yes
- $100 n-n^{2} / 10+50$ ? No
- We only consider asymptotically positive functions.


## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that }
$$

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.


## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that }
$$

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.



## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
\begin{array}{r}
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that } \\
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
\end{array}
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$


## O-Notation: Asymptotic Upper Bound

$O$-Notation For a function $g(n)$,

$$
O(g(n))=\left\{\text { function } f: \exists c>0, n_{0}>0\right. \text { such that }
$$

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c>0$ and every large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$


## Proof.

Let $c=4$ and $n_{0}=50$, for every $n>n_{0}=50$, we have,

$$
\begin{aligned}
& 3 n^{2}+2 n-c\left(n^{2}-10 n\right)=3 n^{2}+2 n-4\left(n^{2}-10 n\right) \\
& =-n^{2}+42 n \leq 0 \\
& 3 n^{2}+2 n \leq c\left(n^{2}-10 n\right)
\end{aligned}
$$

$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that $\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}$.

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that $\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}$.
- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that $\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}$.
- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- ? $n^{100} \in O\left(2^{n}\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that $\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}$.
- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- ? $n^{100} \in O\left(2^{n}\right)$
- ? $\sin n \in O(1 / 2)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\}
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- ? $n^{100} \in O\left(2^{n}\right)$
- ? $\sin n \in O(1 / 2)$
- ? $n^{3} \notin O\left(10 n^{2}\right)$
$O$-Notation For a function $g(n)$,
$O(g(n))=\left\{\right.$ function $f: \exists c>0, n_{0}>0$ such that

$$
\left.f(n) \leq c g(n), \forall n \geq n_{0}\right\} .
$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq c g(n)$ for some $c$ and large enough $n$.
- $3 n^{2}+2 n \in O\left(n^{2}-10 n\right)$
- $3 n^{2}+2 n \in O\left(n^{3}-5 n^{2}\right)$
- ? $n^{100} \in O\left(2^{n}\right)$
- ? $\sin n \in O(1 / 2)$
- ? $n^{3} \notin O\left(10 n^{2}\right)$

$$
\begin{array}{l|l|l|l}
\text { Asymptotic Notations } & O & \Omega & \Theta \\
\hline \text { Comparison Relations } & \leq & &
\end{array}
$$

