O-Notation For a function g(n), $O(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that}$ $f(n) \leq cg(n), \forall n \geq n_0\big\}.$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$

$\label{eq:one-of-Notation} \begin{array}{l} O\text{-Notation} \ \ For \ \mbox{a function} \ \ g(n), \\ O(g(n)) = \left\{ \mbox{function} \ \ f: \ \exists c>0, n_0>0 \ \mbox{such that} \right. \\ \left. f(n) \leq cg(n), \forall n \geq n_0 \right\}. \end{array}$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$

O-Notation For a function g(n),

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that}$$

$$f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$
- ? $n^3 \notin O(10n^2)$

O-Notation For a function g(n),

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \le cg(n), \forall n \ge n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \le cg(n)$ for some c and large enough n.
- $3n^2 + 2n \in O(n^2 10n)$
- $3n^2 + 2n \in O(n^3 5n^2)$
- ? $n^{100} \in O(2^n)$
- $? \sin n \in O(1/2)$
- ? $n^3 \notin O(10n^2)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq		

• We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

"=" is asymmetric! Following equalities are wrong:

- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$

- We use "f(n) = O(g(n))" to denote " $f(n) \in O(g(n))$ "
- $3n^2 + 2n = O(n^3 10n)$
- $3n^2 + 2n = O(n^2 + 5n)$
- $3n^2 + 2n = O(n^2)$

"=" is asymmetric! Following equalities are wrong:

- $O(n^3 10n) = 3n^2 + 2n$
- $O(n^2 + 5n) = 3n^2 + 2n$
- $O(n^2) = 3n^2 + 2n$
- Analogy: Mike is a student. A student is Mike.

O-Notation For a function
$$g(n)$$
,
$$O(g(n)) = \left\{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \right\}.$$

$$\Omega\text{-Notation For a function }g(n),$$

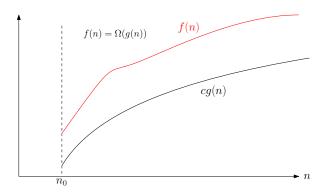
$$\Omega(g(n)) = \big\{\text{function }f: \exists c>0, n_0>0 \text{ such that }$$

$$f(n) \geq cg(n), \forall n \geq n_0\big\}.$$

O-Notation For a function
$$g(n)$$
,
$$O(g(n)) = \{ \text{function } f: \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

$$\Omega\text{-Notation For a function } g(n), \\ \Omega(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that } \\ f(n) \geq cg(n), \forall n \geq n_0 \big\}.$$

• In other words, $f(n) \in \Omega(g(n))$ if $f(n) \ge cg(n)$ for some c and large enough n.



- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	2	

- Again, we use "=" instead of \in .
 - $4n^2 = \Omega(n-10)$
 - $3n^2 n + 10 = \Omega(n^2 20)$

$$\begin{array}{c|cccc} \text{Asymptotic Notations} & O & \Omega & \Theta \\ \hline \text{Comparison Relations} & \leq & \geq & \\ \hline \end{array}$$

Theorem
$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

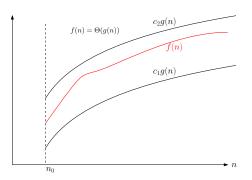
 $\Theta ext{-Notation}$ For a function g(n), $\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that} \\ c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}.$

$$\Theta$$
-**Notation** For a function $g(n)$,
$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".

$$\Theta ext{-Notation}$$
 For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1g(n) \leq f(n) \leq c_2g(n), \forall n \geq n_0 \big\}.$$

• $f(n) = \Theta(g(n))$, then for large enough n, we have " $f(n) \approx g(n)$ ".



$$\Theta ext{-Notation}$$
 For a function $g(n)$,
$$\Theta(g(n)) = \left\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.$$

•
$$3n^2 + 2n = \Theta(n^2 - 20n)$$

$$\Theta ext{-Notation}$$
 For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$

$$\Theta$$
-Notation For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$
- ? $2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$

$$\Theta$$
-Notation For a function $g(n)$,
$$\Theta(g(n)) = \big\{ \text{function } f: \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \big\}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$
- ? $2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$

$$\Theta$$
-**Notation** For a function $g(n)$,
$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $3n^2 + 2n = \Theta(n^2 20n)$
- $2^{n/3+100} = \Theta(2^{n/3})$
- ? $2^{n/3+\sqrt{n}+100} = \Theta(2^{n/3})$

Theorem
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Recall: O, Ω, Θ -Notation: Asymptotic Bounds

O-**Notation** For a function g(n),

$$O(g(n)) = \big\{ \text{function } f: \exists c>0, n_0>0 \text{ such that} \\ f(n) \leq cg(n), \forall n \geq n_0 \big\}.$$

$$\Omega$$
-**Notation** For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \ge cg(n), \forall n \ge n_0 \}.$$

$$\Theta ext{-}\mathbf{Notation}$$
 For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \ge c_1 > 0, n_0 > 0 \text{ such that}$$

$$c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}.$$

Asymptotic Notations	O	Ω	Θ
Comparison Relations	\leq	\geq	=

Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \iff a \le b \text{ and } a \ge b$
- $a \le b$ or $a \ge b$

$$\begin{array}{c|cccc} \text{Asymptotic Notations} & O & \Omega & \Theta \\ \hline \text{Comparison Relations} & \leq & \geq & = \\ \end{array}$$

Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \Leftrightarrow a \le b \text{ and } a \ge b$
- $a \le b$ or $a \ge b$

Correct Analogies

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Trivial Facts on Comparison Relations

- $a \le b \Leftrightarrow b \ge a$
- $a = b \Leftrightarrow a \le b \text{ and } a \ge b$
- $a \le b$ or $a \ge b$

Correct Analogies

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$

Incorrect Analogy

$$\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$$

Incorrect Analogy

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$

Incorrect Analogy

 $\bullet \ f(n) = O(g(n)) \ \text{or} \ f(n) = \Omega(g(n))$

$$f(n) = n^2$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird

- ignoring lower order terms: $3n^2 10n 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- $3n^2 10n 5 = O(n^2)$
- Indeed, $3n^2 10n 5 = \Omega(n^2), 3n^2 10n 5 = \Theta(n^2)$
- In the formal definition of $O(\cdot)$, nothing tells us to ignore lower order terms and leading constant.
- $3n^2 10n 5 = O(5n^2 6n + 5)$ is correct, though weird
- $3n^2-10n-5=O(n^2)$ is the most natural since n^2 is the simplest term we can have inside $O(\cdot)$.

Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.

Notice that O denotes asymptotic upper bound

- $n^2 + 2n = O(n^3)$ is correct.
- The following sentence is correct: the running time of the insertion sort algorithm is $O(n^4)$.
- We say: the running time of the insertion sort algorithm is $O(n^2)$ and the bound is tight.
- We do not use Ω and Θ very often when we upper bound running times.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$			
3n - 50	$n^2 - 7n$			
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$			
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$			
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$			
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^2 - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$			
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$			
\sqrt{n}	$n^{\sin n}$			

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$			

For each pair of functions f,g in the following table, indicate whether f is O,Ω or Θ of g.

f	g	O	Ω	Θ
$n^3 - 100n$	$5n^2 + 3n$	No	Yes	No
3n - 50	$n^{2} - 7n$	Yes	No	No
$n^2 - 100n$	$5n^2 + 30n$	Yes	Yes	Yes
$\log_2 n$	$\log_{10} n$	Yes	Yes	Yes
$\log^{10} n$	$n^{0.1}$	Yes	No	No
2^n	$2^{n/2}$	No	Yes	No
\sqrt{n}	$n^{\sin n}$	No	No	No

Asymptotic Notations	O	Ω	Θ	0	ω
Comparison Relations	\leq	\geq	=	<	>

Asymptotic Notations	O	Ω	Θ	0	ω
Comparison Relations	\leq	\geq	=	<	>

Questions?

Outline

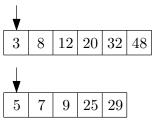
- Syllabus
- 2 Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort
- Asymptotic Notations
- 4 Common Running times

Computing the sum of n numbers

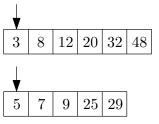
sum(A, n)

- 1: $S \leftarrow 0$
- 2: for $i \leftarrow 1$ to n
- 3: $S \leftarrow S + A[i]$
- 4: return S

3 8 12	2 20	32	48
--------	------	----	----

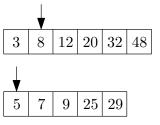


Merge two sorted arrays

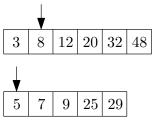


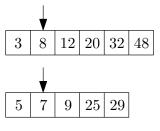
3

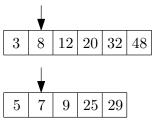
Merge two sorted arrays

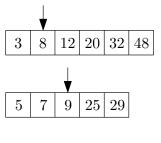


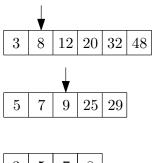
3

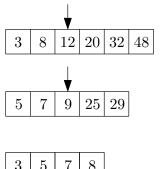


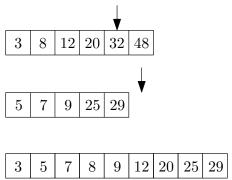


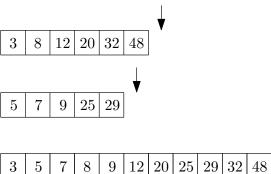












```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i < n_1 and j < n_2 do
        if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
        else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i < n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

Running time = O(n) where $n = n_1 + n_2$.

```
merge(B, C, n_1, n_2) \setminus B and C are sorted, with
length n_1 and n_2
 1: A \leftarrow []; i \leftarrow 1; j \leftarrow 1
 2: while i < n_1 and j < n_2 do
     if B[i] < C[j] then
 3:
            append B[i] to A; i \leftarrow i+1
 4:
      else
 5:
            append C[j] to A; j \leftarrow j+1
 6:
 7: if i < n_1 then append B[i..n_1] to A
 8: if j < n_2 then append C[j..n_2] to A
 9: return A
```

71/86

$\overline{O(n\log n)}$ Running Time

```
merge-sort(A, n)

1: if n = 1 then

2: return A

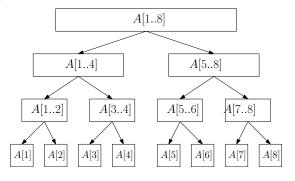
3: B \leftarrow \text{merge-sort}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)

4: C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], n - \lfloor n/2 \rfloor)

5: return \text{merge}(B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor)
```

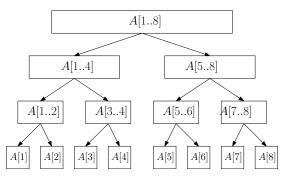
$O(n \log n)$ Running Time

Merge-Sort



$\overline{O(n\log n)}$ Running Time

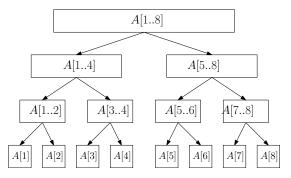
Merge-Sort



• Each level takes running time O(n)

$\overline{O(n \log n)}$ Running Time

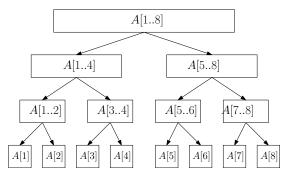
Merge-Sort



- Each level takes running time O(n)
- There are $O(\log n)$ levels

$\overline{O(n \log n)}$ Running Time

Merge-Sort



- Each level takes running time O(n)
- There are $O(\log n)$ levels
- Running time = $O(n \log n)$

Closest Pair

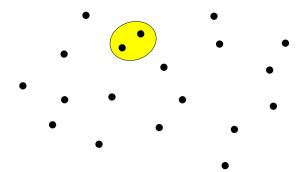
Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Output: the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Output: the pair of points that are closest



Closest Pair

```
Input: n points in plane: (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)
```

Output: the pair of points that are closest

closest-pair(x, y, n)

```
1: bestd \leftarrow \infty

2: for i \leftarrow 1 to n-1 do

3: for j \leftarrow i+1 to n do

4: d \leftarrow \sqrt{(x[i]-x[j])^2+(y[i]-y[j])^2}

5: if d < bestd then

6: besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d

7: return (besti, bestj)
```

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

closest-pair(x, y, n)

```
1: bestd \leftarrow \infty
```

2: **for**
$$i \leftarrow 1$$
 to $n-1$ **do**

3: **for**
$$j \leftarrow i + 1$$
 to n **do**

4:
$$d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$$

5: if
$$d < best d$$
 then

6:
$$besti \leftarrow i, bestj \leftarrow j, bestd \leftarrow d$$

7: return (besti, bestj)

Closest pair can be solved in $O(n \log n)$ time!

$O(n^3)$ (Cubic) Running Time

Multiply two matrices of size $n \times n$

matrix-multiplication(A, B, n)

5:

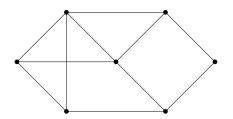
6: return C

```
1: C \leftarrow \text{matrix of size } n \times n, with all entries being 0
2: \mathbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \mathbf{do}
3: \mathbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \mathbf{do}
4: \mathbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \mathbf{do}
```

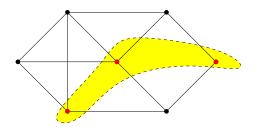
 $C[i,k] \leftarrow C[i,k] + A[i,j] \times B[j,k]$

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

Def. An independent set of a graph G = (V, E) is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.



Def. An independent set of a graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for every $u,v\in S$, we have $(u,v)\notin E$.



Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the maximum independent set of G

max-independent-set(G = (V, E))

- 1: $R \leftarrow \emptyset$
- 2: **for** every set $S \subseteq V$ **do**
- 3: $b \leftarrow \mathsf{true}$
- 4: **for** every $u, v \in S$ **do**
- 5: if $(u, v) \in E$ then $b \leftarrow$ false
- 6: if b and |S| > |R| then $R \leftarrow S$
- 7: return R

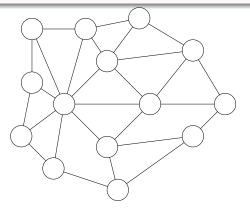
Running time = $O(2^n n^2)$.

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists

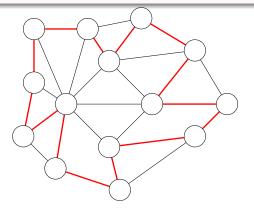


Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once,

or say no such cycle exists



```
\mathsf{Hamiltonian}(G = (V, E))
```

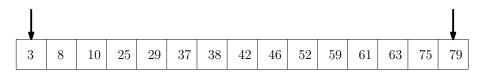
```
1: for every permutation (p_1, p_2, \cdots, p_n) of V do
2: b \leftarrow true
3: for i \leftarrow 1 to n-1 do
4: if (p_i, p_{i+1}) \notin E then b \leftarrow false
5: if (p_n, p_1) \notin E then b \leftarrow false
6: if b then return (p_1, p_2, \cdots, p_n)
7: return "No Hamiltonian Cycle"
```

Running time = $O(n! \times n)$

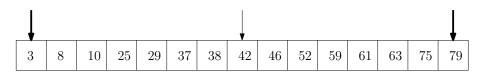
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

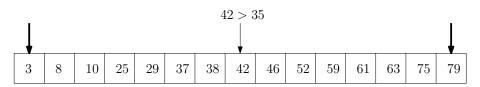
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



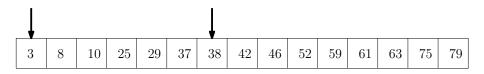
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



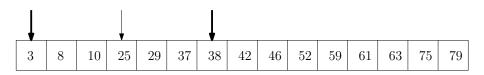
- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



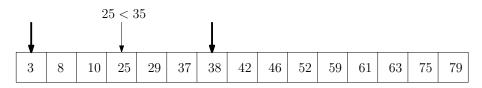
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



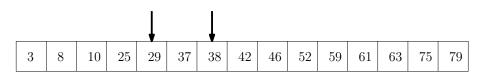
- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



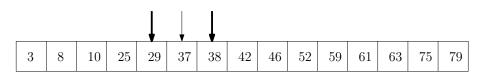
- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



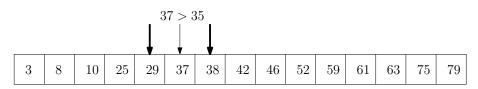
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



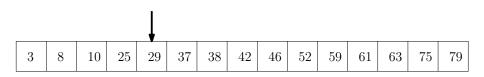
- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
 - Input: sorted array A of size n, an integer t;
 - ullet Output: whether t appears in A.
- E.g, search 35 in the following array:



- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:



Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

Binary search

- Input: sorted array A of size n, an integer t;
- ullet Output: whether t appears in A.

binary-search(A, n, t)

- 1: $i \leftarrow 1, j \leftarrow n$
- 2: while $i \leq j$ do
- 3: $k \leftarrow \lfloor (i+j)/2 \rfloor$
- 4: if A[k] = t return true
- 5: if t < A[k] then $j \leftarrow k-1$ else $i \leftarrow k+1$
- 6: return false

Running time = $O(\log n)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $\bullet \ n = O(n^2)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $\bullet \ n \log n = O(n^2)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- \bullet $e^n = O(n!)$

- Sort the functions from smallest to largest asymptotically $\log n$, $n \log n$, n, n!, n^2 , 2^n , e^n , n^n
- $\log n = O(n)$
- $n = O(n \log n)$
- $n \log n = O(n^2)$
- $n^2 = O(2^n)$
- $2^n = O(e^n)$
- $e^n = O(n!)$
- \bullet $n! = O(n^n)$

Terminologies

When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
 - $O(n \log n) \subseteq O(n^{1.1})$. So, an $O(n \log n)$ -time algorithm is also a polynomial time algorithm.
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$