Test Bipartiteness

28/48

$\mathsf{BFS}(s)$

1:
$$head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$$

2: mark s as "visited" and all other vertices as "unvisited"

3: while $head \leq tail$ do

$$\textbf{4:} \qquad v \leftarrow queue[head], head \leftarrow head + 1$$

- 5: **for** all neighbors u of v **do**
- 6: **if** u is "unvisited" **then** 7: $tail \leftarrow tail + 1, aueue[tail] = u$

8:
$$tait \leftarrow tait + 1, queue[tait] =$$

8: mark u as "visited"

test-bipartiteness(s)

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: $color[s] \leftarrow 0$
- 4: while $head \leq tail$ do
- 5: $v \leftarrow queue[head], head \leftarrow head + 1$
- 6: for all neighbors u of v do
- 7: **if** u is "unvisited" **then**
- 8: $tail \leftarrow tail + 1, queue[tail] = u$
- 9: mark *u* as "visited"

10:
$$color[u] \leftarrow 1 - color[v]$$

- 11: else if color[u] = color[v] then
- 12: print("G is not bipartite") and exit

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness(v)
- 5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbors u of v do
- 3: **if** u is unvisited **then**, recursive-test-DFS(u)

test-bipartiteness-DFS(s)

- 1: mark all vertices as "unvisited"
- 2: $color[s] \leftarrow 0$
- 3: recursive-test-DFS(s)

recursive-test-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbors u of v do
- 3: **if** u is unvisited **then**
- 4: $color[u] \leftarrow 1 color[v]$, recursive-test-DFS(u)
- 5: else if color[u] = color[v] then
- 6: print("G is not bipartite") and exit

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness-DFS(v)
- 5: print("G is bipartite")

- 1: mark all vertices as "unvisited"
- 2: for each vertex $v \in V$ do
- 3: **if** v is "unvisited" **then**
- 4: test-bipartiteness-DFS(v)

5: print("G is bipartite")

Obs. Running time of algorithm = O(n + m)

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Obs. Bipartite graph may contain cycles.

Obs. If a graph is a tree, then it is also a bipartite graph.

Obs. BFS and DFS naturally induce a tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

Obs. If BFS tree =DFS tree, then G is a tree.

- True: simple, undirected graph
- Not True: directed graph

Outline

1 Graphs

Connectivity and Graph Traversal
 Types of Graphs

3 Bipartite Graphs

- Testing Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u, v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering Problem

Input: a directed acyclic graph (DAG) G = (V, E)

Output: 1-to-1 function
$$\pi: V \to \{1, 2, 3 \cdots, n\}$$
, so that

• if $(u,v) \in E$ then $\pi(u) < \pi(v)$

Topological Ordering

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Topological Ordering

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

• Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:

- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$

topological-sort(G)

1:	let $d_v \leftarrow 0$ for every $v \in V$		
2:	for every $v \in V$ do		
3:	for every u such that $(v, u) \in E$ do		
4:	$d_u \leftarrow d_u + 1$		
5:	$S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$		
6:	while $S \neq \emptyset$ do		
7:	$v \leftarrow $ arbitrary vertex in $S, S \leftarrow S \setminus \{v\}$		
8:	$i \leftarrow i+1$, $\pi(v) \leftarrow i$		
9:	for every u such that $(v, u) \in E$ do		
10:	$d_u \leftarrow d_u - 1$		
11:	if $d_u = 0$ then add u to S		
12:	if $i < n$ then output "not a DAG"		

 $\bullet \ S$ can be represented using a queue or a stack

• Running time
$$= O(n+m)$$

DS	Queue	Stack
Initialization	$head \leftarrow 1, tail \leftarrow 0$	$top \leftarrow 0$
Non-Empty?	$head \leq tail$	top > 0
Add(v)	$\begin{array}{l} tail \leftarrow tail + 1 \\ S[tail] \leftarrow v \end{array}$	$\begin{array}{l} top \leftarrow top + 1\\ S[top] \leftarrow v \end{array}$
Retrieve v	$v \leftarrow S[head] \\ head \leftarrow head + 1$	$\begin{array}{c} v \leftarrow S[top] \\ top \leftarrow top - 1 \end{array}$

(g)

42/48

Outline

1 Graphs

Connectivity and Graph Traversal
 Types of Graphs

3 Bipartite Graphs

- Testing Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Def. Word: A string formed by letters.

Def. Adjacency words: Word A and B are adjacent if they differ in exactly one letter.

e.g. word and work; tell and tall; askbe and askee.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

Def. Word Ladder: Players start with one word, and in a series of steps, change or transform that word into another word.

• The objective is to make the change in the smallest number of steps, with each step involving changing a **single letter** of the word to create a new valid word.

Word Ladder Problem

Input: Two words S and T, a list of words $A = \{W_1, W_2, ..., W_k\}$.

Output: "The smallest word ladder" if we can change S to T by moving between adjacency words in $A \cup \{S, T\}$; Otherwise, "No word ladder".

- S="a e f g h", T = "d l m i h"
- W₁="a e f i h", W₂ = "a e m g h", W₃="d l f i h" W₄ = "s e f i h", W₅="a d f g h", W₆ = "d e m i h" W₇="d e f i h", W₈ = "d e m g h", W₉ = "s e m i h"

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.

- Each vertex corresponds to a word.
- Two vertices are adjacent if the corresponding words are adjacent.
- Hints: Given vertex v, check its nearest neighbor.