
28/48

Test Bipartiteness

bad edges!

29/48

Testing Bipartiteness using BFS

BFS(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: while head  tail do

4: v queue[head], head head+ 1
5: for all neighbors u of v do

6: if u is “unvisited” then

7: tail tail + 1, queue[tail] = u

8: mark u as “visited”

29/48

Testing Bipartiteness using BFS

test-bipartiteness(s)
1: head 1, tail 1, queue[1] s

2: mark s as “visited” and all other vertices as “unvisited”
3: color[s] 0
4: while head  tail do

5: v queue[head], head head+ 1
6: for all neighbors u of v do

7: if u is “unvisited” then

8: tail tail + 1, queue[tail] = u

9: mark u as “visited”
10: color[u] 1� color[v]
11: else if color[u] = color[v] then
12: print(“G is not bipartite”) and exit

30/48

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then

4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

30/48

Testing Bipartiteness using BFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then

4: test-bipartiteness(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

31/48

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)
1: mark all vertices as “unvisited”
2: recursive-test-DFS(s)

recursive-test-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then , recursive-test-DFS(u)

31/48

Testing Bipartiteness using DFS

test-bipartiteness-DFS(s)
1: mark all vertices as “unvisited”
2: color[s] 0
3: recursive-test-DFS(s)

recursive-test-DFS(v)
1: mark v as “visited”
2: for all neighbors u of v do

3: if u is unvisited then

4: color[u] 1� color[v], recursive-test-DFS(u)
5: else if color[u] = color[v] then
6: print(“G is not bipartite”) and exit

32/48

Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then

4: test-bipartiteness-DFS(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

32/48

Testing Bipartiteness using DFS

1: mark all vertices as “unvisited”
2: for each vertex v 2 V do

3: if v is “unvisited” then

4: test-bipartiteness-DFS(v)

5: print(“G is bipartite”)

Obs. Running time of algorithm = O(n+m)

33/48

Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

Obs. Bipartite graph may contain
cycles.

Obs. If a graph is a tree, then it is also
a bipartite graph.

33/48

Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

Obs. Bipartite graph may contain
cycles.

Obs. If a graph is a tree, then it is also
a bipartite graph.

33/48

Bipartite Graph

Def. An undirected graph G = (V,E) is
a bipartite graph if there is a partition of
V into two sets L and R such that for
every edge (u, v) 2 E, either
u 2 L, v 2 R or v 2 L, u 2 R.

Obs. Bipartite graph may contain
cycles.

Obs. If a graph is a tree, then it is also
a bipartite graph.

34/48

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

34/48

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

34/48

BFS and DFS

Obs. BFS and DFS naturally induce a tree.

Obs. If G is a tree, then BFS tree = DFS tree.

Obs. If BFS tree =DFS tree, then G is a tree.

35/48

BFS and DFS

Obs. If BFS tree =DFS tree, then G is a tree.

True: simple, undirected graph

Not True: directed graph

36/48

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder

37/48

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function ⇡ : V ! {1, 2, 3 · · · , n}, so that
if (u, v) 2 E then ⇡(u) < ⇡(v)

a b

c d e f

g h i

37/48

Topological Ordering Problem
Input: a directed acyclic graph (DAG) G = (V,E)

Output: 1-to-1 function ⇡ : V ! {1, 2, 3 · · · , n}, so that
if (u, v) 2 E then ⇡(u) < ⇡(v)

1

2

3

4 5

6 7

89

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

a b

c d e f

g h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

a b

d e f

g h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

a b

d e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

a b

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 b

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

e f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 f

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

h i

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

8h

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89

38/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

1

2

3

4 5

6 7

89

39/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as e�cient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

39/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as e�cient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

39/48

Topological Ordering

Algorithm: each time take a vertex without incoming edges, then
remove the vertex and all its outgoing edges.

Q: How to make the algorithm as e�cient as possible?

A:

Use linked-lists of outgoing edges

Maintain the in-degree dv of vertices

Maintain a queue (or stack) of vertices v with dv = 0

40/48

topological-sort(G)
1: let dv 0 for every v 2 V

2: for every v 2 V do

3: for every u such that (v, u) 2 E do

4: du du + 1

5: S {v : dv = 0}, i 0
6: while S 6= ; do
7: v arbitrary vertex in S, S S \ {v}
8: i i+ 1, ⇡(v) i

9: for every u such that (v, u) 2 E do

10: du du � 1
11: if du = 0 then add u to S

12: if i < n then output “not a DAG”

S can be represented using a queue or a stack

Running time = O(n+m)

41/48

S as a Queue or a Stack

DS Queue Stack

Initialization head 1, tail 0 top 0

Non-Empty? head  tail top > 0

Add(v) tail tail + 1
S[tail] v

top top+ 1
S[top] v

Retrieve v v S[head]
head head+ 1

v S[top]
top top� 1

42/48

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

tail

head

a

42/48

Example

a b c d f g

degree

e

queue:

a

b c

d

e

f

g
0 1 1 1 12 3

tail

head

a

42/48

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a

42/48

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a b c

42/48

Example

a b c d f g

degree

e

queue:
b c

d

e

f

g
0 0 0 1 12 3

tail

head

a b c

42/48

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

tail

head

a b c

42/48

Example

a b c d f g

degree

e

queue:
c

d

e

f

g
0 0 0 1 1 1 3

tail

head

a b c

42/48

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c

42/48

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c d f

42/48

Example

a b c d f g

degree

e

queue:

d

e

f

g
0 0 0 0 01 3

tail

head

a b c d f

42/48

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d f

42/48

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d ef

42/48

Example

a b c d f g

degree

e

queue:

e

f

g
0 0 0 0 0 0 2

tail

head

a b c d ef

42/48

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

tail

head

a b c d ef

42/48

Example

a b c d f g

degree

e

queue:

e g
0 0 0 0 0 0 1

tail

head

a b c d ef

42/48

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

head

a b c d ef

42/48

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

head

a b c d ef g

42/48

Example

a b c d f g

degree

e

queue:

g
0 0 0 0 0 0 0

tail

a b c d ef g

head

43/48

Outline

1 Graphs

2 Connectivity and Graph Traversal
Types of Graphs

3 Bipartite Graphs
Testing Bipartiteness

4 Topological Ordering
Applications: Word Ladder

44/48

Def. Word: A string formed by letters.

Def. Adjacency words: Word A and B are adjacent if they di↵er in
exactly one letter.

e.g. word and work; tell and tall; askbe and askee.

45/48

Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word.

The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.

45/48

Def. Word Ladder: Players start with one word, and in a series of
steps, change or transform that word into another word.

The objective is to make the change in the smallest number of
steps, with each step involving changing a single letter of the
word to create a new valid word.

46/48

Word Ladder Problem
Input: Two words S and T , a list of words A = {W1,W2, ...,Wk}.

Output: “ The smallest word ladder” if we can change S to T by
moving between adjacency words in A [{S, T};
Otherwise, “No word ladder”.

Example:

S=“a e f g h”, T = “d l m i h”

W1=“a e f i h”, W2 = “a e m g h”, W3=“d l f i h”
W4 = “s e f i h”, W5=“a d f g h”, W6 = “d e m i h”
W7=“d e f i h”, W8 = “d e m g h”, W9 = “s e m i h”

47/48

Example:

S=“a e f g h”, T = “d l m i h”

W1=“a e f i h”, W2 = “a e m g h”, W3=“d l f i h”
W4 = “s e f i h”, W5=“a d f g h”, W6 = “d e m i h”
W7=“d e f i h”, W8 = “d e m g h”, W9 = “s e m i h”

S

T

W1

W6

W2

W7

W3

W4

W9

W8

W5

Each vertex corresponds to a word.

Two vertices are adjacent if the corresponding words are adjacent.

48/48

S

T

W1

W6

W2

W7

W3

W4

W9

W8

W5

Each vertex corresponds to a word.

Two vertices are adjacent if the corresponding words are adjacent.

Hints: Given vertex v, check its nearest neighbor.

