CSE 431/531: Algorithm Analysis and Design (Spring 2024)
Greedy Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.

$f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.

convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
2. Design more efficient algorithms to solve problems
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
Def. In an **optimization problem**, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in **exponential** time, as the number of potential solutions is often exponentially large.
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.

Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a polynomial if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
- convention: polynomial time = efficient
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem

Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient

Goals of algorithm design
Def. In an optimization problem, our goal is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- $f(n)$ is a polynomial if $f(n) = O(n^k)$ for some constant $k > 0$.
- convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
Def. In an optimization problem, our goal of is to find a valid solution with the minimum cost (or maximum value).

Trivial Algorithm for an Optimization Problem
Enumerate all valid solutions, compare them and output the best one.

- However, trivial algorithm often runs in exponential time, as the number of potential solutions is often exponentially large.
- \(f(n) \) is a polynomial if \(f(n) = O(n^k) \) for some constant \(k > 0 \).
- convention: polynomial time = efficient

Goals of algorithm design
1. Design efficient algorithms to solve problems
2. Design more efficient algorithms to solve problems
Common Paradigms for Algorithm Design

- Greedy Algorithms: shortest path problem
- Divide and Conquer: merge-sort, binary search
- Dynamic Programming: shortest path problem, Fibonacci number
Greedy algorithm properties

Greedy algorithms are often for optimization problems. They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time. Hard to see correctness. Mostly, it is not correct. E.g. min $f(x)$
Greedy algorithms are often for optimization problems.
Greedy algorithm properties

- Greedy algorithms are often for optimization problems.
- They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.
Greedy algorithms are often for optimization problems.

They often run in polynomial time due to their simplicity: easy to come up with, easy to analyze running time.

Hard to see correctness. Mostly, it is not correct. E.g. \(\min f(x) \)
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irreversible decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe” **(key)**
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem **(usually easy)**
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an *irrevocable* decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe” *(key)*
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem *(usually easy)*

Def. A strategy is safe: there is always an optimum solution that agrees with the decision made according to the strategy.
Outline

1. Toy Example: Box Packing

2. Interval Scheduling
 - Interval Partitioning

3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue

4. Data Compression and Huffman Code

5. Summary

6. Exercise Problems
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)
\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)

Can put at most 1 item in a box

Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.

Example:
- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
Box Packing

Input: \(n \) boxes of capacities \(c_1, c_2, \cdots, c_n \)
\(m \) items of sizes \(s_1, s_2, \cdots, s_m \)
Can put at most 1 item in a box
Item \(j \) can be put into box \(i \) if \(s_j \leq c_i \)

Output: A way to put as many items as possible in the boxes.

Example:
- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: 45 → 60, 20 → 40, 16 → 25
Box Packing

Input: n boxes of capacities c_1, c_2, \cdots, c_n

m items of sizes s_1, s_2, \cdots, s_m

Can put at most 1 item in a box

Item j can be put into box i if $s_j \leq c_i$

Output: A way to put as many items as possible in the boxes.

Example:

- Box capacities: 60, 40, 25, 17, 12
- Item sizes: 45, 41, 20, 19, 16
- Can put 3 items in boxes: 45 \rightarrow 60, 20 \rightarrow 40, 16 \rightarrow 25
- Can put 4 items in boxes: 45 \rightarrow 60, 20 \rightarrow 40, 19 \rightarrow 25, 16 \rightarrow 17
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irreversable decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an **irrevocable** decision using a “reasonable” strategy

Designing a Reasonable Strategy for Box Packing

- Q: Take box 1. Which item should we put in box 1?
- A: The item of the largest size that can be put into the box.
Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma
The strategy that put into box 1 the largest item it can hold is “safe”:

There is an optimum solution in which box 1 contains the largest item it can hold.

Intuition: putting the item gives us the easiest residual problem.

Formal proof via exchanging argument:
Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.
Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- Intuition: putting the item gives us the easiest residual problem.
Analysis of Greedy Algorithm

- **Safety**: Prove that the reasonable strategy is “safe”
- **Self-reduce**: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Lemma The strategy that put into box 1 the largest item it can hold is “safe”: There is an optimum solution in which box 1 contains the largest item it can hold.

- **Intuition**: putting the item gives us the easiest residual problem.
- **Formal proof via exchanging argument**:
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof. Let \(j \) = largest item that box 1 can hold. Take any optimum solution \(S \). If \(j \) is put into Box 1 in \(S \), done. Otherwise, assume this is what happens in \(S \): \(s_j \not\leq s_j \), and swap giving a solution \(S_0 \). In \(S_0 \), \(j \) is put into Box 1.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j =$ largest item that box 1 can hold.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.
- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.
- Let $j =$ largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

 ![Diagram of box 1 with items](image.png)

 where j is placed in box 1, and swapping gives a solution S^\prime. In S^\prime, j is put into Box 1.
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.
- Let j = largest item that box 1 can hold.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:
 - $s_{j'} \leq s_j$, and swapping gives another solution S'
Lemma There is an optimum solution in which box 1 contains the largest item it can hold.

Proof.

- Let $j = \text{largest item that box 1 can hold}$.
- Take any optimum solution S. If j is put into Box 1 in S, done.
- Otherwise, assume this is what happens in S:

 S':

 \[
 \begin{array}{cccc}
 \text{box 1} & \text{item } j' & \text{item } j & \cdots \n \end{array}
 \]

 $s_{j'} \leq s_j$, and swapping gives another solution S'

 S' is also an optimum solution. In S', j is put into Box 1. \qed
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Notice that the exchanging operation is only for the sake of analysis; it is not a part of the algorithm.

Analysis of Greedy Algorithm

- **Safety:** Prove that the reasonable strategy is “safe”
- **Self-reduce:** Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

- **Trivial:** we decided to put Item j into Box 1, and the remaining instance is obtained by removing Item j and Box 1.
Generic Greedy Algorithm

1. while the instance is non-trivial do
2. make the choice using the greedy strategy
3. reduce the instance

Greedy Algorithm for Box Packing

1. \(T \leftarrow \{1, 2, 3, \cdots, m\} \)
2. for \(i \leftarrow 1 \) to \(n \) do
3. if some item in \(T \) can be put into box \(i \) then
4. \(j \leftarrow \) the largest item in \(T \) that can be put into box \(i \)
5. print(“put item \(j \) in box \(i \)”)
6. \(T \leftarrow T \setminus \{j\} \)
Why “Safety” + “Self-reduce” \implies Optimality?

- Let $\text{BP}(B,T)$ denote a box-packing instance.
- $\phi(1, 2, ..., m) \mapsto \{1, 2, ..., n, \text{NULL}\}$ denote packing strategy. e.g., $\phi(2) = 3$ means item 2 is put into box 3.
- $\text{val}(\phi) :=$ the number of items packed by ϕ.
- ϕ_g: the packing strategy obtained by greedy algorithm.

Proof.

- **Base case:** When $|B| = 1$ or $|T| = 1$.
- **Inductive case:** (Hypothesis) Assume Greedy alg solves $\text{BP}(B', T')$ optimally for $|B'| = n - 1$ and $|T'| = m - 1$.

Why “Safety” + “Self-reduce” \implies Optimality?

Proof.

1. (Induction) Wlog, let π be the optimal solution matches our greedy sol on $\text{BP}(B, T)$, saying $\pi(j) = 1$.
2. By self-reduce: $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$ is a smaller BP instance.
3. π and ϕ_g onto $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$, denoted as π' and ϕ'_g.
4. By Inductive hypothesis, ϕ'_g is the optimal sol for $\text{BP}(B \setminus \{1\}, T \setminus \{j\})$.
5. $\text{val}(\pi) \geq \text{val}(\phi_g) = 1 + \text{val}(\phi'_g) \geq 1 + \text{val}(\pi') = \text{val}(\pi)$.

$q.e.d.$
Running time

Generic Greedy Algorithm

1. **while** the instance is non-trivial **do**
2. make the choice using the greedy strategy
3. reduce the instance

Greedy Algorithm for Box Packing

1. $T \leftarrow \{1, 2, 3, \ldots, m\}$
2. **for** $i \leftarrow 1$ to n **do**
3. **if** some item in T can be put into box i **then**
4. $j \leftarrow$ the largest item in T that can be put into box i
5. print(“put item j in box i”)
6. $T \leftarrow T \setminus \{j\}$
Running time

Generic Greedy Algorithm
1: **while** the instance is non-trivial **do**
2: make the choice using the greedy strategy
3: reduce the instance

Greedy Algorithm for Box Packing
1: \(T \leftarrow \{1, 2, 3, \cdots, m\} \)
2: **for** \(i \leftarrow 1 \) to \(n \) **do**
3: **if** some item in \(T \) can be put into box \(i \) **then**
4: \(j \leftarrow \) the largest item in \(T \) that can be put into box \(i \)
5: print(“put item \(j \) in box \(i \)”)
6: \(T \leftarrow T \setminus \{j\} \)
Running time

Generic Greedy Algorithm

1. **while** the instance is non-trivial **do**
2. make the choice using the greedy strategy
3. reduce the instance

Greedy Algorithm for Box Packing

1. $T \leftarrow \{1, 2, 3, \ldots , m\}$
2. **for** $i \leftarrow 1$ to n **do**
3. **if** some item in T can be put into box i **then**
4. $j \leftarrow$ the largest item in T that can be put into box i
5. print(“put item j in box i”)
6. $T \leftarrow T \setminus \{j\}$

- With sorted item-sizes and box-capacities, running time is $O(\max\{n, m\})$.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
Generic Greedy Algorithm

1: while the instance is non-trivial do
2: make the choice using the greedy strategy
3: reduce the instance

Lemma Generic algorithm is correct if and only if the greedy strategy is safe.

- Greedy strategy is safe: we will not miss the optimum solution
- Greedy strategy is not safe: we will miss the optimum solution for some instance, since the choices we made are irrevocable.
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocabable decision using a “reasonable” strategy
Greedy Algorithm
- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm
- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem
Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a “reasonable” strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is “safe”
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem

Def. A strategy is “safe” if there is always an optimum solution that is “consistent” with the decision made according to the strategy.
let S be an arbitrary optimum solution.

if S is consistent with the greedy choice, done.

otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.
let S be an arbitrary optimum solution.
if S is consistent with the greedy choice, done.
otherwise, show that it can be modified to another optimum solution S' that is consistent with the choice.

The procedure is not a part of the algorithm.
Outline

1. Toy Example: Box Packing

2. Interval Scheduling
 - Interval Partitioning

3. Offline Caching
 - Heap: Concrete Data Structure for Priority Queue

4. Data Compression and Huffman Code

5. Summary

6. Exercise Problems
Interval Scheduling

Input: \(n \) jobs, job \(i \) with start time \(s_i \) and finish time \(f_i \)

\(i \) and \(j \) are compatible if \([s_i, f_i)\) and \([s_j, f_j)\) are disjoint

Output: A maximum-size subset of mutually compatible jobs
Interval Scheduling

Input: n jobs, job i with start time s_i and finish time f_i
i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ are disjoint

Output: A maximum-size subset of mutually compatible jobs
Greedy Algorithm for Interval Scheduling

Which of the following strategies are safe?

No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
Which of the following strategies are safe?

- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!

Schedule the job with the earliest finish time? Yes!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
- Schedule the job with the smallest size? No!
- Schedule the job conflicting with smallest number of other jobs? No!
- Schedule the job with the earliest finish time?
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!
Greedy Algorithm for Interval Scheduling

- Which of the following strategies are safe?
 - Schedule the job with the smallest size? No!
 - Schedule the job conflicting with smallest number of other jobs? No!
 - Schedule the job with the earliest finish time? Yes!

![Diagram showing intervals and job scheduling]

- [Diagram details: intervals from 0 to 9, colors representing scheduled and available intervals]
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S

S: [] [] [] [] []
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution S
- If it contains j, done
Lemma It is safe to schedule the job \(j \) with the earliest finish time: There is an optimum solution where the job \(j \) with the earliest finish time is scheduled.

Proof.
- Take an arbitrary optimum solution \(S \)
- If it contains \(j \), done
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution S
- If it contains j, done
- Otherwise, replace the first job in S with j to obtain another optimum schedule S'.
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job \(j \) with the earliest finish time: There is an optimum solution where the job \(j \) with the earliest finish time is scheduled.

Proof.

- Take an arbitrary optimum solution \(S \)
- If it contains \(j \), done
- Otherwise, replace the first job in \(S \) with \(j \) to obtain another optimum schedule \(S' \).
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem?
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Greedy Algorithm for Interval Scheduling

Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Lemma It is safe to schedule the job j with the earliest finish time: There is an optimum solution where the job j with the earliest finish time is scheduled.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval scheduling problem? Yes!
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \cdots , n\}, \ S \leftarrow \emptyset\)
2: \textbf{while} \(A \neq \emptyset\) \textbf{do}
3: \(j \leftarrow \text{arg min}_{j' \in A} f_{j'}\)
4: \(S \leftarrow S \cup \{j\}; \ A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return} \(S\)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2: \textbf{while} \(A \neq \emptyset\) \textbf{do}
3: \(j \leftarrow \text{arg min}_{j' \in A} f_{j'}\)
4: \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return} \(S\)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2: \textbf{while} \(A \neq \emptyset\) \textbf{do}
3: \(j \leftarrow \arg \min_{j' \in A} f_{j'}\)
4: \(S \leftarrow S \cup \{j\}; \ A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return} \(S\)
Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1. $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$
2. **while** $A \neq \emptyset$ **do**
3. $j \leftarrow \arg \min_{j' \in A} f_{j'}$
4. $S \leftarrow S \cup \{j\}; \ A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$
5. **return** S
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1: \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2: \textbf{while} \(A \neq \emptyset\) \textbf{do}
3: \(j \leftarrow \arg\min_{j' \in A} f_{j'}\)
4: \(S \leftarrow S \cup \{j\}; \ A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return} \(S\)
Greedy Algorithm for Interval Scheduling

Schedule\((s, f, n)\)

1. \(A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\)
2. **while** \(A \neq \emptyset\) **do**
3. \(j \leftarrow \arg \min_{j' \in A} f_{j'}\)
4. \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5. **return** \(S\)
Greedy Algorithm for Interval Scheduling

\[\text{Schedule}(s, f, n)\]

1: \[A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset\]
2: \textbf{while} \(A \neq \emptyset \) \textbf{do}
3: \(j \leftarrow \arg \min_{j' \in A} f_{j'} \)
4: \(S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \geq f_j\}\)
5: \textbf{return} \(S \)

Running time of algorithm?
Greedy Algorithm for Interval Scheduling

Schedule*(s, f, n)***

1. \(A \leftarrow \{1, 2, \ldots, n\} \), \(S \leftarrow \emptyset \)
2. while \(A \neq \emptyset \) do
3. \(j \leftarrow \arg \min_{j' \in A} f_{j'} \)
4. \(S \leftarrow S \cup \{j\} \); \(A \leftarrow \{j' \in A : s_{j'} \geq f_{j}\} \)
5. return \(S \)

Running time of algorithm?

- Naive implementation: \(O(n^2) \) time
Greedy Algorithm for Interval Scheduling

Schedule(s, f, n)

1. $A \leftarrow \{1, 2, \cdots, n\}$, $S \leftarrow \emptyset$
2. while $A \neq \emptyset$ do
3. \hspace{1em} $j \leftarrow \text{arg min}_{j' \in A} f_{j'}$
4. \hspace{1em} $S \leftarrow S \cup \{j\}$; $A \leftarrow \{j' \in A : s_{j'} \geq f_j\}$
5. return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- Clever implementation: $O(n \lg n)$ time