CSE 431/531: Algorithm Analysis and Design (Spring 2024)

Dynamic Programming

Lecturer: Kelin Luo

Department of Computer Science and Engineering
University at Buffalo

Paradigms for Designing Algorithms

Greedy algorithm

o Make a greedy choice

@ Prove that the greedy choice is safe

@ Reduce the problem to a sub-problem and solve it iteratively
°

Usually for optimization problems

Divide-and-conquer
@ Break a problem into many independent sub-problems
@ Solve each sub-problem separately

@ Combine solutions for sub-problems to form a solution for the
original one

@ Usually used to design more efficient algorithms

Paradigms for Designing Algorithms

Dynamic Programming

@ Break up a problem into many overlapping sub-problems
@ Build solutions for larger and larger sub-problems

@ Use a table to store solutions for sub-problems for reuse

Recall: Computing the n-th Fibonacci Number

(] FO = 0, F1 =1
(] Fn = Fn,1 + Fn,Q,Vn > 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34,55,89, - --

1. F[0] <0

2: F[l] — 1

3: for i < 2 ton do

4 F[i] + F[i — 1]+ F[i — 2]
5: return F'[n]

Recall: Computing the n-th Fibonacci Number

(] F() = 0, F1 =1
(] Fn = Fn,1 + Fn,Q,Vn > 2
e Fibonacci sequence: 0,1,1,2,3,5,8,13,21, 34,55,89, - --

1. F[0] <0

2: F[l] — 1

3: for i < 2 ton do

4 F[i] + F[i — 1]+ F[i — 2]
5: return F'[n]

@ Store each Fi] for future use.

@ Weighted Interval Scheduling

Recall: Interval Schduling
Input: n jobs, job 7 with start time s; and finish time f;

i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-size subset of mutually compatible jobs

Recall: Interval Schduling
Input: n jobs, job 7 with start time s; and finish time f;

i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-size subset of mutually compatible jobs

==
. Em e
1!

Weighted Interval Scheduling
Input: n jobs, job 7 with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-weight subset of mutually compatible jobs

Weighted Interval Scheduling
Input: n jobs, job 7 with start time s; and finish time f;
each job has a weight (or value) v; > 0
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: a maximum-weight subset of mutually compatible jobs

I 100 [50 |
C }
v [90 |

