Find Common Subsequence

i< n,j+m,S <+ ()

2: while 7 > 0 and j > 0 do
if 7[¢,j] ="\" then
4 add A[i] to beginning of S, i« i—1,jj—1
5 else if 7[i, j] ="1" then

6: 141—1
7

8

9:

else
Jjg—1
return S




Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?
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o A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’




Variants of Problem

Edit Distance with Insertions and Deletions
Input: a string A and a string B

each time we can delete a letter from A or insert a letter
to A

Output: minimum number of operations (insertions or deletions) we
need to change A to B?

v

Example:
e A= ocurrance, B = occurrence

@ 3 operations: insert 'c’, remove 'a’ and insert ‘e’

Obs. #OPs = length(A) + length(B) - 2 - length(LCS(A, B)) J




Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?




Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:

e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’




Variants of Problem

Edit Distance with Insertions, Deletions and Replacing
Input: a string A and a string B

each time we can delete a letter from A, insert a letter to
A or change a letter

Output: how many operations do we need to change A to B?

Example:

e A= ocurrance, B = occurrence.

@ 2 operations: insert 'c’, change 'a’ to 'e’

@ Not related to LCS any more



Edit Distance with Replacing: Reduction to a

Variant of LCS

@ Need to match letters in A and B, every letter is matched at most
once and there should be no crosses.

@ However, we can match two different letters: Matching a same
letter gives score 2, matching two different letters gives score 1.

@ Need to maximize the score.
@ DP recursion for the case i > 0 and 5 > O:
optli — 1,7 —1]+2 if Ali] = B[j]
PP IT= ) max optli, j — 1] if Ali] # Blj]

optli—1,7 — 1] +1

Relation : #OPs = length(A) + length(B) - max_score



Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and B[l .. j].
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@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and BJ[1 .. j].

e if i = 0 then opt[i, j| = j; if j = 0 then optli, j] = i.
e ifi > 0,7 >0, then
if Ali] = Blj]

optli, j] = if Ali] # B[j]



Edit Distance (with Replacing): using DP directly

@ optli,j],0 <i<n,0 <j<m: edit distance between A[l .. i
and BJ[1 .. j].

e if i = 0 then opt[i, j| = j; if j = 0 then optli, j] = i.
e ifi > 0,7 >0, then
optli — 1,7 — 1] if A[i] = B[j]

optli, j] = if Ali] # B[j]



Edit Distance (with Replacing): using DP directly

@ optfi,j],0 <i<mn,0<j<m: edit distance between A[l .. ]
and BJ[1 .. j].

e if i = 0 then opt[i, j] = j; if 7 = 0 then opt[i, j| = i.

e ifi > 0,7 >0, then

optli — 1,7 — 1] if A[i] = B[j]
optli. ] = optli — 1,j]+1
’ min optli,j — 1]+ 1 if A[i] # B[j]

optli — 1,7 — 1]+ 1



@ Longest Common Subsequence
@ Longest Common Subsequence in Linear Space



Computing the Length of LCS

1. for j <~ 0 to m do

2 opt[0, j] < 0

3: for i <~ 1 ton do

4 opt|i, 0] « 0

5: for j < 1 to m do
6 if Afi] = B[j] then

7 optli,jl < optli — 1,7 — 1]+ 1

8 else if opt[i,j — 1] > opt[i — 1, j]| then
0: optli, j] < optli, 7 — 1]

10: else
11: optli, j] < optli — 1, j]

Obs. The i-th row of table only depends on (i — 1)-th row. |




Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row. ]

Q: How to use this observation to reduce space? J




Reducing Space to O(n + m)

Obs. The i-th row of table only depends on (i — 1)-th row. ]

Q: How to use this observation to reduce space? J

A: We only keep two rows: the (¢ — 1)-th row and the i-th row. |




Linear Space Algorithm to Compute Length of LCS

1. for j <~ 0 to m do

2 opt|0, j] < 0

3: for i<~ 1tondo

4 opt[i mod 2,0] < 0

5 for j < 1tomdo

6 if Afi] = B[j] then

7 opt[i mod 2, j] < opt[i —1 mod 2,5 — 1] + 1

8 else if opt[i mod 2,5 — 1] > opt[i — 1 mod 2, j] then
0: optli mod 2, j] < opt[i mod 2, j — 1]

10: else
11: optli mod 2, j] « opt[i — 1 mod 2, j]
12: return opt[n mod 2, m)|




How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]
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How to Recover LCS Using Linear Space?

@ Only keep the last two rows: only know how to match A[n]

@ Can recover the LCS using n rounds: time = O(n*m)

@ Using Divide and Conquer 4+ Dynamic Programming:
e Space: O(m +n)
o Time: O(nm)



© Shortest Paths in Directed Acyclic Graphs



Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles. J

not a DAG



Directed Acyclic Graphs

Def. A directed acyclic graph (DAG) is a directed graph without
(directed) cycles. J

not a DAG

Lemma A directed graph is a DAG if and only its vertices can be
topologically sorted. J




Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,j) € E, then i < j
Output: the shortest path from 1 to i, for every 1 € V'
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Shortest Paths in DAG
Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if
(i,j) € E, then i < j
Output: the shortest path from 1 to i, for every 1 € V'

/@\69 \3
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Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i
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Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i



Shortest Paths in DAG

e f[i]: length of the shortest path from 1 to i

. Jo .
= {minjzu,i)eE {f() +w(,d)} i=23,--,n



Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1: f[l] ~0
2: for i < 2 ton do
fli] oo
for each incoming edge (j,i) of i do
if flj] +w(j,i) < f[i] then
fli) « fl] + w(5,9)

C
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Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG
1: f[l] ~0
2: for i < 2 ton do
fli] oo
for each incoming edge (j,i) of i do
if flj] +w(j,i) < f[i] then
fli] < Fli] + w(5, )
(i) < j

C

No g s




Shortest Paths in DAG

@ Use an adjacency list for incoming edges of each vertex i

Shortest Paths in DAG

1 f1] <0 'Print-Path(t)

2: for i < 2 ton do 1: if £t =1 then

3: fli] ¢ o0 2 print(1)

4: for each incoming edge (j,7) of ¢ do 3 return

5: if flj] +w(j,i) < f[i] then 4: print-path(m(t))

6: fli] < flg] +w(y, 1) 5. print(")”, t)

7: m(i) « j ] ’




Example
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Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if

(i,7) € E, then i < j

Output: the path with the largest weight (the heaviest path) from

1 to n.

o f[i]: weight of the heaviest path from 1 to ¢

. i=1
f[z]—{ i=2,3,--




Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if

(i,7) € E, then i < j

Output: the path with the largest weight (the heaviest path) from

1 to n.

o f[i]: weight of the heaviest path from 1 to ¢

- {'




Variant: Heaviest Path in a Directed Acyclic Graph

Heaviest Path in a Directed Acyclic Graph

Input: directed acyclic graph G = (V, E) and w : E — R.
Assume V = {1,2,3--- n} is topologically sorted: if

(i,7) € E, then i < j

Output: the path with the largest weight (the heaviest path) from

1 to n.

o f[i]: weight of the heaviest path from 1 to ¢

. J0 i
= {maszu,z')ezz{f(j) FuGhi)) i=23

,n




@ Matrix Chain Multiplication



Matrix Chain Multiplication

Matrix Chain Multiplication

Input: n matrices Ay, Ay, -+, A, of sizes
r1 X C1,T9 X Cay- - Ty X Cp, such that ¢; = r;,; for every
i=1,2,--,n—1.
Output: the order of computing A; Ay - - - A, with the minimum
number of multiplications

Fact Multiplying two matrices of size r x k and k x ¢ takes
r X k X ¢ multiplications.




Example:

e A;:10 x 100, As:100 x 5,

[10x100| [100x5 ]| [ 5x50 |

10-100 - 5

cost = 5000 + 2500 = 7500

A325X50

cost = 25000 + 50000 = 75000

o (A1A3)As: 10 x 100 x 5+ 10 x 5 x 50 = 7500
o Ay (A3As): 100 X 5 x 50 + 10 x 100 x 50 = 75000




Example:
@ A;:10x 100, Ay:100x5, Asz:5x50

[10x100| [100x5 ]| [ 5x50 |

10-100 - 5

cost = 5000 + 2500 = 7500 cost = 25000 + 50000 = 75000

o (A1A3)As: 10 x 100 x 5+ 10 x 5 x 50 = 7500
o Ay (A3As): 100 X 5 x 50 + 10 x 100 x 50 = 75000
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Matrix Chain Multiplication: Design DP

@ Assume the last step is (A1 Ay -+ A;)(Ain1Aie - Ay)
@ Cost of last step: 1 X ¢; X ¢,

@ Optimality for sub-instances: we need to compute A A, --- A;
and A/L'+1AZ'+2 tee An optlmally

@ opt[i,j] : the minimum cost of computing A;A; 41 -+ A;

. 1=]
opt|t, j| = ) , . o
(7] {mmk:igkq (opt[i, k] + optlk + 1, 5] + rice;) i< j



