When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant $k$
  - $O(n \log n) \subseteq O(n^{1.1})$. So, an $O(n \log n)$-time algorithm is also a polynomial time algorithm.
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when $n$ is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonably large $n$, algorithm with lower order running time beats algorithm with higher order running time.
Outline

1. Graphs

2. Connectivity and Graph Traversal
   - Types of Graphs

3. Bipartite Graphs
   - Testing Bipartiteness

4. Topological Ordering
   - Applications: Word Ladder
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph \( G = (V, E) \)

- \( V \): set of vertices (nodes);
- \( E \): pairwise relationships among \( V \);
  - (undirected) graphs: relationship is symmetric, \( E \) contains subsets of size 2
(Undirected) Graph $G = (V, E)$

- $V$: set of vertices (nodes);
  - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $E$: pairwise relationships among $V$;
  - (undirected) graphs: relationship is symmetric, $E$ contains subsets of size 2
  - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Directed Graph $G = (V, E)$

- $V$: set of vertices (nodes);
  - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $E$: pairwise relationships among $V$;
  - directed graphs: relationship is asymmetric, $E$ contains ordered pairs
Directed Graph $G = (V, E)$

- **$V$**: set of vertices (nodes);
  - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

- **$E$**: pairwise relationships among $V$;
  - directed graphs: relationship is asymmetric, $E$ contains ordered pairs
  - $E = \{(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8), (4, 5), (5, 6), (6, 5), (8, 7)\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[
E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\}
\]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Represention of Graphs

Adjacency matrix

- \( n \times n \) matrix, \( A[u, v] = 1 \) if \( (u, v) \in E \) and \( A[u, v] = 0 \) otherwise
- \( A \) is symmetric if graph is undirected

\[
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]
Adjacency matrix
- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- $A$ is symmetric if graph is undirected

Linked lists
- For every vertex $v$, there is a linked list containing all neighbors of $v$. 
Adjacency matrix

- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- $A$ is symmetric if graph is undirected

Linked lists

- For every vertex $v$, there is a linked list containing all neighbors of $v$.
- When graph is static, can use array of variant-length arrays.
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- $n$: number of vertices
- $m$: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- $d_v$: number of neighbors of $v$

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of $v$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- $n$: number of vertices
- $m$: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- $d_v$: number of neighbors of $v$

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td></td>
</tr>
<tr>
<td>time to check $(u,v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of $v$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- $n$: number of vertices
- $m$: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- $d_v$: number of neighbors of $v$

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of $v$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \( n \): number of vertices
- \( m \): number of edges, assuming \( n - 1 \leq m \leq n(n - 1)/2 \)
- \( d_v \): number of neighbors of \( v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>( O(n^2) )</td>
<td>( O(m) )</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>( O(1) )</td>
<td></td>
</tr>
<tr>
<td>time to list all neighbors of ( v )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \( n \): number of vertices
- \( m \): number of edges, assuming \( n - 1 \leq m \leq n(n - 1)/2 \)
- \( d_v \): number of neighbors of \( v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>( O(n^2) )</td>
<td>( O(m) )</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>( O(1) )</td>
<td>( O(d_u) )</td>
</tr>
<tr>
<td>time to list all neighbors of ( v )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- $n$: number of vertices
- $m$: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- $d_v$: number of neighbors of $v$

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td>$O(1)$</td>
<td>$O(d_u)$</td>
</tr>
<tr>
<td>time to list all neighbors of $v$</td>
<td>$O(n)$</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \( n \): number of vertices
- \( m \): number of edges, assuming \( n - 1 \leq m \leq \frac{n(n - 1)}{2} \)
- \( d_v \): number of neighbors of \( v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>( O(n^2) )</td>
<td>( O(m) )</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>( O(1) )</td>
<td>( O(d_u) )</td>
</tr>
<tr>
<td>time to list all neighbors of ( v )</td>
<td>( O(n) )</td>
<td>( O(d_v) )</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
   - Types of Graphs

3. Bipartite Graphs
   - Testing Bipartiteness

4. Topological Ordering
   - Applications: Word Ladder
Connectivity Problem

**Input:** graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

**Output:** whether there is a path connecting $s$ to $t$ in $G$
Connectivity Problem

**Input:** graph $G = (V, E)$, (using linked lists)
  
  two vertices $s, t \in V$

**Output:** whether there is a path connecting $s$ to $t$ in $G$

- Algorithm: starting from $s$, search for all vertices that are reachable from $s$ and check if the set contains $t$
Connectivity Problem

**Input:** graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

**Output:** whether there is a path connecting $s$ to $t$ in $G$

- Algorithm: starting from $s$, search for all vertices that are reachable from $s$ and check if the set contains $t$
- Breadth-First Search (BFS)
Connectivity Problem

**Input:** graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

**Output:** whether there is a path connecting $s$ to $t$ in $G$

- Algorithm: starting from $s$, search for all vertices that are reachable from $s$ and check if the set contains $t$
  - Breadth-First Search (BFS)
  - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$ contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in $L_j$
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$ contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in $L_j$
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$ contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in $L_j$
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$ contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in $L_j$
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- $L_{j+1}$ contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in $L_j$
Implementing BFS using a Queue

BFS(s)

1: \( \text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2: mark \( s \) as “visited” and all other vertices as “unvisited”
3: while \( \text{head} \leq \text{tail} \) do
4: \( v \leftarrow \text{queue}[\text{head}], \text{head} \leftarrow \text{head} + 1 \)
5: for all neighbors \( u \) of \( v \) do
6: \hspace{2em} if \( u \) is “unvisited” then
7: \hspace{4.5em} \text{tail} \leftarrow \text{tail} + 1, \text{queue}[\text{tail}] = u
8: \hspace{2em} mark \( u \) as “visited”

- Running time: \( O(n + m) \).
Example of BFS via Queue
Example of BFS via Queue
Example of BFS via Queue

Diagram of a graph showing nodes and edges, with a queue representation on the right side, illustrating the Breadth-First Search algorithm.
Example of BFS via Queue

Graph representation:

- Nodes: 1, 2, 3, 4, 5, 6, 7, 8
- Edges: (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (5, 6), (5, 8)

Queue representation:

- Queue: [1, 2, 3, 4, 5, 7]
- Head: 1
- Tail: 7

The vertex 'v' is the starting point for the breadth-first search.
Example of BFS via Queue
Example of BFS via Queue

1
2
3
4
5
6
7
8

v

tail
head
Example of BFS via Queue

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
```

```
1 2 3 4 5 7 8 6
Example of BFS via Queue
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from $s$
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \( s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using Recursion

**DFS(\(s\))**
1. mark all vertices as “unvisited”
2. recursive-DFS(\(s\))

**recursive-DFS(\(v\))**
1. mark \(v\) as “visited”
2. for all neighbors \(u\) of \(v\) do
3. if \(u\) is unvisited then recursive-DFS(\(u\))
Outline

1. Graphs

2. Connectivity and Graph Traversal
   - Types of Graphs

3. Bipartite Graphs
   - Testing Bipartiteness

4. Topological Ordering
   - Applications: Word Ladder
**Def.** An undirected graph $G = (V, E)$ is a **path** if the vertices can be listed in an order $\{v_1, v_2, \ldots, v_n\}$ such that the edges are the $\{v_i, v_{i+1}\}$ where $i = 1, 2, \ldots, n - 1$.

- Path graphs are connected graphs.
**Def.** An undirected graph $G = (V, E)$ is a **cycle** if its vertices can be listed in an order $v_1, v_2, \ldots, v_n$ such that the edges are the $\{v_i, v_{i+1}\}$ where $i = 1, 2, \ldots, n - 1$, plus the edge $\{v_n, v_1\}$.

- The degree of all vertices is 2.
Def. An undirected graph $G = (V, E)$ is a tree if any two vertices are connected by exactly one path. Or the graph is a connected acyclic graph.

- Most important type of special graphs: most computational problems are easier to solve on trees or lines.
Complete Graph

**Def.** An undirected graph \( G = (V, E) \) is a complete graph if each pair of vertices is joined by an edge.

- A complete graph contains all possible edges.
Planar Graph

**Def.** An undirected graph \( G = (V, E) \) is a **planar graph** if its vertices and edges can be drawn in a plane such that no two of the edges intersect.

- Most computational problems have good solutions in a planar graph.
Def. A directed graph $G = (V, E)$ is a directed acyclic graph if it is a directed graph with no directed cycles.

- DAG is equivalent to a partial ordering of nodes.
Def. An undirected graph $G = (V, E)$ is a bipartite graph if there is a partition of $V$ into two sets $L$ and $R$ such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$. 
Outline

1. Graphs

2. Connectivity and Graph Traversal
   - Types of Graphs

3. Bipartite Graphs
   - Testing Bipartiteness

4. Topological Ordering
   - Applications: Word Ladder
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of $V$ into two sets $L$ and $R$ such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$. 
Testing Bipartiteness

- Taking an arbitrary vertex \( s \in V \)
Testing Bipartiteness

- Taking an arbitrary vertex \( s \in V \)
- Assuming \( s \in L \) w.l.o.g
Taking an arbitrary vertex $s \in V$

Assuming $s \in L$ w.l.o.g

Neighbors of $s$ must be in $R$
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of $s$ must be in $R$
- Neighbors of neighbors of $s$ must be in $L$

Report "not a bipartite graph" if contradiction was found

If $G$ contains multiple connected components, repeat above algorithm for each component
Testing Bipartiteness

- Taking an arbitrary vertex \( s \in V \)
- Assuming \( s \in L \) w.l.o.g
- Neighbors of \( s \) must be in \( R \)
- Neighbors of neighbors of \( s \) must be in \( L \)
- \( \ldots \)
Testing Bipartiteness

- Taking an arbitrary vertex \( s \in V \)
- Assuming \( s \in L \) w.l.o.g
- Neighbors of \( s \) must be in \( R \)
- Neighbors of neighbors of \( s \) must be in \( L \)
- \( \ldots \)
- Report “not a bipartite graph” if contradiction was found
Testing Bipartiteness

- Taking an arbitrary vertex \( s \in V \)
- Assuming \( s \in L \) w.l.o.g
- Neighbors of \( s \) must be in \( R \)
- Neighbors of neighbors of \( s \) must be in \( L \)
- \( \ldots \)
- Report “not a bipartite graph” if contradiction was found
- If \( G \) contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!