When we talk about upper bound on running time:

- Logarithmic time: $O(\log n)$
- Linear time: O(n)
- Quadratic time ${\cal O}(n^2)$
- ${\ensuremath{\, \circ \, }}$ Cubic time ${\cal O}(n^3)$
- $\bullet\,$ Polynomial time: $O(n^k)$ for some constant k
 - $O(n\log n)\subseteq O(n^{1.1}).$ So, an $O(n\log n)\text{-time algorithm is also a polynomial time algorithm.}$
- Exponential time: $O(c^n)$ for some c > 1
- Sub-linear time: o(n)
- Sub-quadratic time: $o(n^2)$

Goal of Algorithm Design

• Design algorithms to minimize the order of the running time.

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms

Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
- Using asymptotic analysis allows us to ignore the leading constants and lower order terms
- Makes our life much easier! (E.g., the leading constant depends on the implementation, complier and computer architecture of computer.)

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

A:

• Sometimes yes

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!

• e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time 1000n?

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For "natural" algorithms, constants are not so big!
- So, for reasonably large *n*, algorithm with lower order running time beats algorithm with higher order running time.

CSE 431/531: Algorithm Analysis and Design (Spring 2024) Graph Basics

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

1 Graphs

- Connectivity and Graph Traversal
 Types of Graphs
- Bipartite GraphsTesting Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, ${\cal E}$ contains subsets of size 2

(Undirected) Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, ${\cal E}$ contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - \bullet directed graphs: relationship is asymmetric, E contains ordered pairs

Directed Graph G = (V, E)

- V: set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1,2), (1,3), (3,2), (4,2), (2,5), (5,3), (3,7), (3,8), (4,5), (5,6), (6,5), (8,7)\}$

Abuse of Notations

- For (undirected) graphs, we often use (i, j) to denote the set $\{i, j\}$.
- We call (i, j) an unordered pair; in this case (i, j) = (j, i).

• $E = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,5), (3,7), (3,8), (4,5), (5,6), (7,8)\}$

- Social Network : Undirected
- Transition Graph : Directed
- Road Network : Directed or Undirected
- Internet : Directed or Undirected

Representation of Graphs

	1	2	3	4	5	6	7	8
1	0 1 1 0 0 0 0 0 0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Adjacency matrix

- $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
- A is symmetric if graph is undirected

Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbors of v.

Representation of Graphs

- Adjacency matrix
 - $n \times n$ matrix, A[u,v] = 1 if $(u,v) \in E$ and A[u,v] = 0 otherwise
 - A is symmetric if graph is undirected
- Linked lists
 - For every vertex v, there is a linked list containing all neighbors of v.
 - When graph is static, can use array of variant-length arrays.

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- *m*: number of edges, assuming $n 1 \le m \le n(n 1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage		
time to check $(u,v) \in E$		
time to list all neighbors of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	
time to check $(u,v) \in E$		
time to list all neighbors of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$		
time to list all neighbors of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	
time to list all neighbors of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of v		

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of v	O(n)	

- Assuming we are dealing with undirected graphs
- *n*: number of vertices
- m: number of edges, assuming $n-1 \le m \le n(n-1)/2$
- d_v : number of neighbors of v

	Matrix	Linked Lists
memory usage	$O(n^2)$	O(m)
time to check $(u,v) \in E$	O(1)	$O(d_u)$
time to list all neighbors of v	O(n)	$O(d_v)$

Outline

Graphs

Connectivity and Graph TraversalTypes of Graphs

3 Bipartite Graphs

- Testing Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

• Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)

Input: graph G = (V, E), (using linked lists) two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from *s*, search for all vertices that are reachable from *s* and check if the set contains *t*
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j

$\mathsf{BFS}(s)$

- 1: $head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s$
- 2: mark s as "visited" and all other vertices as "unvisited"
- 3: while $head \leq tail$ do
- $\textbf{4:} \qquad v \leftarrow queue[head], head \leftarrow head + 1$
- 5: for all neighbors u of v do
- 6: **if** *u* is "unvisited" **then**
- 7: $tail \leftarrow tail + 1, queue[tail] = u$

8: mark *u* as "visited"

• Running time: O(n+m).

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from \boldsymbol{s}
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

Implementing DFS using Recurrsion

DFS(s)

- 1: mark all vertices as "unvisited"
- 2: recursive-DFS(s)

recursive-DFS(v)

- 1: mark v as "visited"
- 2: for all neighbors u of v do
- 3: **if** u is unvisited **then** recursive-DFS(u)

Outline

Graphs

Connectivity and Graph TraversalTypes of Graphs

3 Bipartite Graphs

- Testing Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Def. An undirected graph G = (V, E) is a path if the vertices can be listed in an order $\{v_1, v_2, ..., v_n\}$ such that the edges are the $\{v_i, v_{i+1}\}$ where i = 1, 2, ..., n - 1.

• Path graphs are connected graphs.

Cycle Graph (or Circular Graph)

Def. An undirected graph G = (V, E) is a cycle if its vertices can be listed in an order $v_1, v_2, ..., v_n$ such that the edges are the $\{v_i, v_{i+1}\}$ where i = 1, 2, ..., n - 1, plus the edge $\{v_n, v_1\}$.

• The degree of all vertices is 2.

Def. An undirected graph G = (V, E) is a tree if any two vertices are connected by exactly one path. Or the graph is a connected acyclic graph.

• Most important type of special graphs: most computational problems are easier to solve on trees or lines.

Def. An undirected graph G = (V, E) is a complete graph if each pair of vertices is joined by an edge.

• A complete graph contains all possible edges.

Def. An undirected graph G = (V, E) is a planar graph if its vertices and edges can be drawn in a plane such that no two of the edges intersect.

Most computational problems have good solutions in a planar graph.

Directed Acyclic Graph (DAG)

Def. A directed graph G = (V, E) is a directed acyclic graph if it is a directed graph with no directed cycles

• DAG is equivalent to a partial ordering of nodes.

Def. An undirected graph G = (V, E) is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, either $u \in L, v \in R$ or $v \in L, u \in R$.

Outline

1 Graphs

- Connectivity and Graph Traversal
 Types of Graphs
- Bipartite GraphsTesting Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Outline

1 Graphs

- Connectivity and Graph Traversal
 Types of Graphs
- Bipartite GraphsTesting Bipartiteness
- Topological Ordering
 Applications: Word Ladder

Testing Bipartiteness: Applications of BFS

```
Def. A graph G = (V, E) is a bipartite
graph if there is a partition of V into two
sets L and R such that for every edge
(u, v) \in E, either u \in L, v \in R or
v \in L, u \in R.
```


• Taking an arbitrary vertex $s \in V$

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- $\bullet\,$ Neighbors of s must be in R

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- $\bullet\,$ Neighbors of neighbors of s must be in L

• • • •

- Taking an arbitrary vertex $s \in V$
- \bullet Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

• Report "not a bipartite graph" if contradiction was found

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L

• • • •

- Report "not a bipartite graph" if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component

