Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: j(—argminj/EA fj’

4 S—Su{jh, A« {jeAl:sy>f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time
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© Interval Scheduling
@ Interval Partitioning
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Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.
@ Take an arbitrary optimum solution S
@ If it schedules j to the chosen feasible machine ¢, done

@ Otherwise, replace all the jobs scheduled to the machine i in S
with 7 and its subsequent jobs to obtain another optimum
schedule 5’. O




Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem?




Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!




Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!




Greedy Algorithm for Interval Partitioning

Partition(s, f,n)
A+ {1,2,--- ,n}, S« {1}, t; =0
while A # () do
J < argminjicq Sy, Sj {i/}i/es,tilgsj
If S; # (, then schedule j to a machine i € S; and ¢; = f;
Otherwise, schedule j to machine |S|+ 1, S+ SU{|S|+ 1}
and tig = f;

6: return S
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Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

J

Obs. The number of machines > the depth of the jobs.

J

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

J
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Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs

overlapping at time s; + €. The jobs depth > d.

By the Observation in the previous slide, an optimal solution > d.

Thus the greedy algorithm is optimal.

O
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Partition(s, f,n)
L A+—{1,2,---,n}, S« {1}, t1 =0
2: while A # () do
3: j + arg minjleA Sjts Sj — {i/}i’ES,ti/SSj
4: If S; # (, then schedule j to a machine i € S; and ¢; = f;
5: Otherwise, schedule j to machine [S|+ 1, S «+ SU{|S|+ 1}
and tig = f;
6: return S )

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time with Priority Queue.



© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue
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cache
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@ Cache that can store k pages sequence; .

@ Sequence of page requests X L]
e Cache miss happens if X ]
requested page not in cache. X

We need bring the page into
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cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X ]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [1][5] [4]
% [1] 2] [4]
% [1] 2] [5]
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@ Sequence of page requests X D D
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We need bring the page into
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page if necessary.

% [ [5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v ] [2][3]
REEE

@ Cache hit happens if requested
page already in cache.

=] o] [ [=] ] (=] [ [=]



Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X ]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [ [5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v ] [2][3]
REEE

misses = 6

@ Cache hit happens if requested
page already in cache.
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Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
% [
% [G][]
x 61
% W[ [1]
x [ [2][5]
x [J[2][3]
v WEA
MniBla

misses = 6

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.
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A Better Solution for Example

page
sequence !
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.

Cx O] [][]
Cx [
x [ 5] [4]
% [ [2] 4]
% [ 2] [5]
% [ [2][3]
v [l 2][3]
v [l [2[E]

misses = 6

cache

.

x [OC
x [
x [ [e
x [ [2
v Ol
x [1]Bl[z
v OBl
v O]l

misses = 5
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@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms
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Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.
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FIFO is not optimum

FIFO - Furthest-in-Future
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Optimum Offline Caching

Furthest-in-Future (FF)

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.
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Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)
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Offline Caching Problem
Input: k : the size of cache
n : number of pages
P1,P2,P3,°** , pr € [n]: sequence of requests
Output: iy,i9,143, - ,i; € {hit,empty} U [n]
e empty stands for an empty page
o “hit" means evicting no pages




Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Pk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages




