Greedy Algorithm for Interval Scheduling

Schedule(s, f,n)

A« {1,2,--- ,n}, S« 0

2: while A # () do

3: j(—argminj/EA fj’

4 S—Su{jh, A« {jeAl:sy>f;}
5. return S

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« sSu{jt !
t fj l
return S 0

N oakoen

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« Su{j}
bt fj
return S L2 3 4 5 6 7.8 9,

N oakoen

- —

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values
10,50
. for every j € [n] according to non-decreasing order of f; do
if s; >t then
S« Su{j}
bt fj
return S L2 3 4 5 6 7.8 9,

N oakoen

- —

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0.1 2 3 4 5 6 7 8 9,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2: 640,50

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« SU{j} t

6: %= Jfg l

7: return S 9‘1‘234‘5‘6‘7‘895

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0.1 2 3 4 5 6 7 8 9,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} '

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S+ Su{j} !

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} ¢

6: %= Jfg 1

7: return S 0 1 2 3 4 5 6 7 8 9 ,

Clever Implementation of Greedy Algorithm

Schedule(s, f,n)

1: sort jobs according to f values

2.t 0,510

3: for every j € [n] according to non-decreasing order of f; do

4: if s; >t then

5: S« Su{j} L

6: %= Jfg l

7: return S 0 1 2 3 4 5 6 7 8 9 ,

© Interval Scheduling
@ Interval Partitioning

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

4 5 6 7 8 9
| |

u
e

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

4 5 6 7 8 9
| |

u
e

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9
[

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9
N

——

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Interval Partitioning
Input: n jobs, job 7 with start time s; and finish time f;
i and j are compatible if [s;, fi) and [s;, f;) are disjoint
Output: A minimum number of machines to schedule all jobs so
that all jobs on a single machine are compatible.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.

@ Take an arbitrary optimum solution S

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.

@ Take an arbitrary optimum solution S

@ If it schedules j to the chosen feasible machine ¢, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.

@ Take an arbitrary optimum solution S

@ If it schedules j to the chosen feasible machine ¢, done

Greedy Algorithm for Interval Partitioning

Lemma It is safe to schedule the job j with the earliest starting
time to a feasible machine: There exists an optimum solution where
job j with the earliest starting time is scheduled first on a machine
that is compatible with all jobs in that machine if applicable;
otherwise, it can be scheduled by opening a new machine.

Proof.
@ Take an arbitrary optimum solution S
@ If it schedules j to the chosen feasible machine ¢, done

@ Otherwise, replace all the jobs scheduled to the machine i in S
with 7 and its subsequent jobs to obtain another optimum
schedule 5’. O

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem?

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

@ What is the remaining task after we decided to schedule 57

@ Is it another instance of interval partitioning problem? Yes!

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)
A+ {1,2,--- ,n}, S« {1}, t; =0
while A # () do
J < argminjicq Sy, Sj {i/}i/es,tilgsj
If S; # (, then schedule j to a machine i € S; and ¢; = f;
Otherwise, schedule j to machine |S|+ 1, S+ SU{|S|+ 1}
and tig = f;

6: return S

g kR eh =

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

E—

/1 /|1 @
n ==

»

—

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

0128 4567589
o == =
- .

»

R

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

—

-
—

Greedy Algorithm for Interval Partitioning

0 1 2 3 4 5 6 7 8 9

E—

-
—

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
o = = .
.

e

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
S T B N R S
. m

R

Greedy Algorithm for Interval Partitioning
0 1 2 3 4 5 6 7 8 9 ,
o | o
. m

R

Greedy Algorithm for Interval Partitioning

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set. J

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set. J

Obs. The number of machines > the depth of the jobs.)

Greedy Algorithm for Interval Partitioning

Def. The depth of a set of jobs is the maximum number of
overlapping jobs at any point within the given set.

J

Obs. The number of machines > the depth of the jobs.

J

Obs. Greedy algorithm never schedules two incompatible jobs in the
same machine.

J

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

@ Let d be the number of machines that greedy algorithm used.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

@ Let d be the number of machines that greedy algorithm used.

@ d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.
@ Let d be the number of machines that greedy algorithm used.

@ d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

@ Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs
overlapping at time s; + €. The jobs depth > d.

Why “Greedy algorithm” is optimal?

Theorem Greedy algorithm is optimal.

Proof.

Let d be the number of machines that greedy algorithm used.

d-th machine is opened because the greedy algorithm need to
schedule a job, wlog, say job 7, such that job j is incompatible
with all the last scheduled jobs in the d — 1 other machines. In
other words, these d — 1 job each ends after s;.

Observation: all these d — 1 jobs starts earlier than s; because we
schedule the jobs in order of starting time. Thus, we have d jobs

overlapping at time s; + €. The jobs depth > d.

By the Observation in the previous slide, an optimal solution > d.

Thus the greedy algorithm is optimal.

O

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)
L A+—{1,2,---,n}, S« {1}, t1 =0
2: while A # () do
3: j + arg minjleA Sjts Sj — {i/}i’ES,ti/SSj
4: If S; # (, then schedule j to a machine i € S; and ¢; = f;
5: Otherwise, schedule j to machine |S|+ 1, S+ SU{|S|+ 1}
and tig = f;
6: return S)

Running time of algorithm?

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)
L A+—{1,2,---,n}, S« {1}, t1 =0
2: while A # () do
3: j + arg minjleA Sjts Sj — {i/}i’eS,ti/SSj
4: If S; # (, then schedule j to a machine i € S; and ¢; = f;
5: Otherwise, schedule j to machine |S|+ 1, S+ SU{|S|+ 1}
and tig = f;
6: return S)

Running time of algorithm?

e Naive implementation: O(n?) time

Greedy Algorithm for Interval Partitioning

Partition(s, f,n)
L A+—{1,2,---,n}, S« {1}, t1 =0
2: while A # () do
3: j + arg minjleA Sjts Sj — {i/}i’ES,ti/SSj
4: If S; # (, then schedule j to a machine i € S; and ¢; = f;
5: Otherwise, schedule j to machine [S|+ 1, S «+ SU{|S|+ 1}
and tig = f;
6: return S)

Running time of algorithm?
e Naive implementation: O(n?) time

@ Clever implementation: O(nlgn) time with Priority Queue.

© Offline Caching
@ Heap: Concrete Data Structure for Priority Queue

Offline Caching

@ Cache that can store k£ pages

@ Sequence of page requests

Offline Caching

cache

page
@ Cache that can store k pages sequence! .

@ Sequence of page requests

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence; .

x [0

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! .
@ Sequence of page requests X N

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

X

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests X LI
x [5][]

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing

page if necessary.

=] o] (2] [=] [] [=] [=]

Offline Caching

cache

page
@ Cache that can store k pages sequence | D D D
@ Sequence of page requests X LI
x [5][]
X

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] (2] [=] [] [=] [=]

Offline Caching

cache

page
@ Cache that can store k pages sequence; .

@ Sequence of page requests X L]
e Cache miss happens if X]
requested page not in cache. X

We need bring the page into
cache, and evict some existing

page if necessary.

=] o] [=2] [=] [] [=]

Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
x [1[]
% W[5 []
x5
- X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%?%%CQ .
x [1[]
x [5][]
% [1][5] [4]
% [1] 2] [4]

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%?%%CQ .
x [1[]
x [5][]
% [1][5] [4]
% [1] 2] [4]
X

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [1][5] [4]
% [1] 2] [4]
% [1] 2] [5]

=] o] [[=]] (=] [[=]

Offline Caching

cache

page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
@ Cache miss happens if X]
\r/t:/quested page not in ca_che. X

e need bring the page into ;
cache, and evict some existing X
page if necessary. X

X
‘

Offline Caching

cache

@ Cache that can store k pages SC%igC(ilcci I
@ Sequence of page requests X HiN
@ Cache miss happens if X]
e o n e
cache, and evict some existing X
page if necessary. X
x

‘

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
x [1][2] [3]

v

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
o Cache miss happens if X]
requested page not in ca_che. X
We need bring the page into ;
cache, and evict some existing X
page if necessary. X
@ Cache hit happens if requested %
page already in cache. 3
v

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X LI
o Cache miss happens if X]
requested page not in ca_che. X
We need bring the page into ;
cache, and evict some existing X
page if necessary. X
@ Cache hit happens if requested %
page already in cache. 3
v
v

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v] [2][3]
REEE

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache
page
@ Cache that can store k pages sequence! D D D
@ Sequence of page requests X D D
e Cache miss happens if X]

requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

% [[5][4]
% [1] 2] [4]
% [1] 2] [5]
- x [1] 2] [3]
v] [2][3]
REEE

misses = 6

@ Cache hit happens if requested
page already in cache.

=] o] [[=]] (=] [[=]

Offline Caching

cache

@ Cache that can store k pages SC%??C%CQ% D D D
% [
% [G][]
x 61
% W[[1]
x [[2][5]
x [J[2][3]
v WEA
MniBla

misses = 6

@ Sequence of page requests

o Cache miss happens if
requested page not in cache.
We need bring the page into
cache, and evict some existing
page if necessary.

@ Cache hit happens if requested
page already in cache.

@ Goal: minimize the number of
cache misses.

=] o] [[=]] (=] [[=]

A Better Solution for Example

page
sequence !

(=] o] (2] [&] [o] [=] [e] [=]

cache

.

Cx O] [][]
Cx [
x [5] [4]
% [[2] 4]
% [2] [5]
% [[2][3]
v [l 2][3]
v [l [2[E]

misses = 6

cache

.

x [OC
x [
x [[e
x [[2
v Ol
x [1]Bl[z
v OBl
v O]l

misses = 5

Offline Caching Problem

Input: £ : the size of cache

e e T We use [n] for {1,2,3,--- ,n}.

P15 P2, P3,° -+, pr € [n]: sequence of requests

Output: iy,i9,143,- -+ ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n}.

P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Offline Caching Problem

Input: £ : the size of cache

n : number of pages We use [n] for {1,2,3,---,n}.

P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

Offline Caching Problem

Input: £ : the size of cache
We use [n] for {1,2,3,--- ,n}.

n : number of pages
P1, P2, P35+, pr € [n]: sequence of requests

Output: iy, 49,143, - ,ir € {hit,empty} U [n]: indices of pages to
evict ("hit” means evicting no page, “empty” means
evicting empty page)

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

@ Offline Caching: we know the whole sequence ahead of time.

@ Online Caching: we have to make decisions on the fly, before
seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the
“competitive ratio” of online algorithms

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

Offline Caching: Potential Greedy Algorithms

o FIFO(First-In-First-Out): Evict the first-in page in cache
o LRU(Least-Recently-Used): Evict page whose most recent access
was earliest

o LFU(Least-Frequently-Used): Evict page that was least frequently
requested

@ LIFO (Last In First Out): Evict the last-in page in cache

@ All the above algorithms are not optimum!

@ Indeed all the algorithms are “online”, i.e, the decisions can be
made without knowing future requests. Online algorithms can not
be optimum.

FIFO is not optimum

FIFO

NN

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

NN

—
@

e}
o
D
wn
>
n

x

=]] Lo [o] =]

FIFO is not optimum

FIFO

- O
s [[][]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x 1] 11
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

g
x 1] 11
x [1][2][]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

I
x 1] 11
x [1][2]]]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x 1] 11
x [1][2]]]
x [1][2][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]
X

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO

- U
x [1][][]
x [1][2]]]
x [1][2][3]
x [4][2][3]
x [4][1][3]

—
@

e}
o
D
wn
>
n

=]] Lo [o] =]

FIFO is not optimum

FIFO
requests || | || |
1] s [][]
2] x [[2][]
3 x [[2][3]
4] x 4] [2][3]
1] x (4] 1] 3]

misses = H

FIFO is not optimum

FIFO - Furthest-in-Future

equess [J[]0] I
ok WL e [
2l s 2]k [[2] []
3 % [1[2][s] % [1][2][3]
4] P x a2 3] % (1] [4] (3]
RIS SEUIRRREI R PN EAREY

misses = 5H misses = 4

Optimum Offline Caching

Furthest-in-Future (FF)

@ Algorithm: every time, evict the page that is not requested until
furthest in the future, if we need to evict one.

@ The algorithm is not an online algorithm, since the decision at a
step depends on the request sequence in the future.

Furthest-in-Future (FF)

X
X
X
X

—
@

Qo
o
@
0
+
n

=]] [eo] [ro] [=]

FIFO

] (=] = =] L
o] [ro] o] [][]
(o] [eo) LI LT L]

x (4] [[3]

misses = 5

Furthest-in-Future

LI

Cx [0
ox [2] []
o x [1][2][3]
- x [1][4] [3]
v][]]3]

misses = 4

requests

,,, >

requests

-]
(]

,,, >

][] 2] %

requests

0 HEEEEE@EQBE B
X X X

0 O [

0 OB B

0 00O [

requests

-]
(]
[+]

,,, >

][] 2] %
=] [2] %

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X
IR TUF]

(o] [+
(o] [~]
o]]
i
L] O

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v
) O]) I 2ol
L O] [5) 5] [8]

L O L0 o) e 4

o]

[in]

requests

1] 5] [4) 2] 5] 3] @) @2) 3] [(B) [3]

4

-

X X X X v
) O]) I 2ol
L O] [5) 5] [8]

L O L0 o) e 4

e}

in)

requests

1] 5] [4) 2] 5] 3] @) @2) 3] [(B) [3]

4

-

X X X X v X
L O]) O)R] fE
L0] [s) [s] [s] [3]

L O O [[e [[4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v X
L O]) O)R] fE
L0] [s) [s] [s] [3]

L O O [[e [[4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v XV
L) O]) O 2] [2]

=

L0] [s) [s] [s] 8] [3]
L) O O [[a] [4] [a) [4

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X X v Xv v
L) O]) B 2 [2) B2 f2) 2

=

L 00] [s) [s]) [s] [8] [8] [8]
L O L0 [[a] [4] [a) [4) [4]

requests

0

1)][4 [2) [5) [3] [2] [4] [3) [of [5) [3]

X X X Xv Xv vV
L) O] o) O)R])R] L2l

=

L) 0] [5) [s) [s] [8) [3] [3] [3]
L L) O L) [a) L4 [a] [4] [a] [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X Xv Xv vV
L) O] o) O)R])R] L2l

=

L) 0] [5) [s) [s] [8) [3] [3] [3]
L L) O L) [a) L4 [a] [4] [a] [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X X v Xv v v X
L] [0 [[2] 2] [2) [2] [2) [2] [

=

L)L] [s) [s] [s] [3) [3] [3] [8) [3]
L) O L0 [4) [a] [4] [a) [4) [4] [4) [4]

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-- >

X X X X v Xv v v XX

=

L) O]) B 2 [2) [2] [[2) [(5

=

L) 00] [s) [s] [s] [3) [3] [3] [3) [3] [3]
L)L) O L) [a) 4] o) [4] (4] [4) [a] 4

requests

1]) (4] [2) [5) [3] [2] [4] [3) Lo 5] (B)

-

X X X X v Xv vV XXV
L) 00 O [2] 2] 2]) 2] 2] [[s] (5]

=

L 00] [s) [s] [s] [3) (3] [3] [8) [3] [3] [3]
L O L L) [a) [4] o [4f [a) [4) [a) [4] [4]

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm
@ Build up the solutions in steps

@ At each step, make an irrevocable decision using a “reasonable”
strategy

Analysis of Greedy Algorithm
@ Safety: Prove that the reasonable strategy is “safe” (key)

@ Self-reduce: Show that the remaining task after applying the
strategy is to solve a (many) smaller instance(s) of the same
problem (usually easy)

Offline Caching Problem
Input: k : the size of cache
n : number of pages
P1,P2,P3,°** , pr € [n]: sequence of requests
Output: iy,i9,143, - ,i; € {hit,empty} U [n]
e empty stands for an empty page
o “hit" means evicting no pages

Offline Caching Problem

Input: k : the size of cache
n : number of pages
P1, P2, 03, ,PT € [n] sequence of requests
P1,D2, - Pk € {empty} U [n]: initial set of pages in cache
Output: iy,149,143,- -, € {hit,empty} U [n]
e empty stands for an empty page
o “hit” means evicting no pages

