Greedy Algorithm for Interval Scheduling

$\mathsf{Schedule}(s, f, n)$

- 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \emptyset$
- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} f_{j'}$
- 4: $S \leftarrow S \cup \{j\}; A \leftarrow \{j' \in A : s_{j'} \ge f_j\}$
- 5: return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- Clever implementation: $O(n \lg n)$ time

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \ge t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{j\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{i\}$
- 6: $t \leftarrow f_j$
- 7: return S

- 1: sort jobs according to f values
- 2: $t \leftarrow 0$, $S \leftarrow \emptyset$
- 3: **for** every $j \in [n]$ according to non-decreasing order of f_i **do**
- 4: if $s_i \geq t$ then
- 5: $S \leftarrow S \cup \{i\}$
- 6: $t \leftarrow f_j$
- 7: return S

Outline

- Toy Example: Box Packing
- 2 Interval Scheduling
 - Interval Partitioning
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- 4 Data Compression and Huffman Code
- **5** Summary
- 6 Exercise Problems

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so that all jobs on a single machine are compatible.

0 1 2 3 4 5 6 7 8 9

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Input: n jobs, job i with start time s_i and finish time f_i

i and j are compatible if $\left[s_i,f_i\right)$ and $\left[s_j,f_j\right)$ are disjoint

Output: A minimum number of machines to schedule all jobs so

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

Proof.

ullet Take an arbitrary optimum solution S

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- ullet Take an arbitrary optimum solution S
- ullet If it schedules j to the chosen feasible machine i, done

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- ullet Take an arbitrary optimum solution S
- ullet If it schedules j to the chosen feasible machine i, done

Lemma It is safe to schedule the job j with the earliest starting time to a feasible machine: There exists an optimum solution where job j with the earliest starting time is scheduled first on a machine that is compatible with all jobs in that machine if applicable; otherwise, it can be scheduled by opening a new machine.

- ullet Take an arbitrary optimum solution S
- ullet If it schedules j to the chosen feasible machine i, done
- Otherwise, replace all the jobs scheduled to the machine i in S with j and its subsequent jobs to obtain another optimum schedule S'.

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval partitioning problem?

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval partitioning problem? Yes!

- What is the remaining task after we decided to schedule j?
- Is it another instance of interval partitioning problem? Yes!

Partition(s, f, n)

- 1: $A \leftarrow \{1, 2, \dots, n\}, S \leftarrow \{1\}, t_1 = 0$
- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to a machine $i \in S_j$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine |S|+1, $S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|}=f_i$
- 6: return S

Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.

Def. The **depth** of a set of jobs is the maximum number of overlapping jobs at any point within the given set.

Obs. The number of machines \geq the depth of the jobs.

Obs. Greedy algorithm never schedules two incompatible jobs in the same machine.

Theorem Greedy algorithm is optimal.

Proof.

 \bullet Let d be the number of machines that greedy algorithm used.

Theorem Greedy algorithm is optimal.

Proof.

- ullet Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .

Theorem Greedy algorithm is optimal.

Proof.

- ullet Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .
- Observation: all these d-1 jobs starts earlier than s_j because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time $s_j + \epsilon$. The jobs **depth** $\geq d$.

Theorem Greedy algorithm is optimal.

Proof.

- ullet Let d be the number of machines that greedy algorithm used.
- d-th machine is opened because the greedy algorithm need to schedule a job, wlog, say job j, such that job j is incompatible with all the last scheduled jobs in the d-1 other machines. In other words, these d-1 job each ends after s_j .
- Observation: all these d-1 jobs starts earlier than s_j because we schedule the jobs in order of starting time. Thus, we have d jobs overlapping at time $s_j + \epsilon$. The jobs **depth** $\geq d$.
- ullet By the Observation in the previous slide, an optimal solution $\geq d$. Thus the greedy algorithm is optimal.

Partition(s, f, n)

```
1: A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0

2: while A \neq \emptyset do

3: j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}

4: If S_j \neq \emptyset, then schedule j to a machine i \in S_j and t_i = f_j

5: Otherwise, schedule j to machine |S| + 1, S \leftarrow S \cup \{|S| + 1\} and t_{|S|} = f_j

6: return S
```

Running time of algorithm?

Partition(s, f, n)

- 1: $A \leftarrow \{1, 2, \cdots, n\}, S \leftarrow \{1\}, t_1 = 0$
- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_j}$
- 4: If $S_j \neq \emptyset$, then schedule j to a machine $i \in S_j$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine |S|+1, $S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|}=f_{j}$
- 6: return S

Running time of algorithm?

• Naive implementation: $O(n^2)$ time

Partition(s, f, n)

- 1: $A \leftarrow \{1, 2, \dots, n\}, S \leftarrow \{1\}, t_1 = 0$
- 2: while $A \neq \emptyset$ do
- 3: $j \leftarrow \arg\min_{j' \in A} s_{j'}, S_j \leftarrow \{i'\}_{i' \in S, t_{i'} \leq s_i}$
- 4: If $S_j \neq \emptyset$, then schedule j to a machine $i \in S_j$ and $t_i = f_j$
- 5: Otherwise, schedule j to machine |S|+1, $S \leftarrow S \cup \{|S|+1\}$ and $t_{|S|}=f_j$
- 6: return S

Running time of algorithm?

- Naive implementation: $O(n^2)$ time
- ullet Clever implementation: $O(n\lg n)$ time with Priority Queue.

Outline

- Toy Example: Box Packing
- Interval SchedulingInterval Partitioning
- Offline Caching
 - Heap: Concrete Data Structure for Priority Queue
- Data Compression and Huffman Code
- Summary
- 6 Exercise Problems

- ullet Cache that can store k pages
- Sequence of page requests

- ullet Cache that can store k pages
- Sequence of page requests

cache

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache. We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

page sequence cache

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.

misses = 6

- ullet Cache that can store k pages
- Sequence of page requests
- Cache miss happens if requested page not in cache.
 We need bring the page into cache, and evict some existing page if necessary.
- Cache hit happens if requested page already in cache.
- Goal: minimize the number of cache misses.

misses = 6

A Better Solution for Example

Input: k: the size of cache n: number of pages We use [n] for $\{1,2,3,\cdots,n\}$.

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to

evict ("hit" means evicting no page, "empty" means

evicting empty page)

Input: k: the size of cache n: number of pages We use [n] for $\{1,2,3,\cdots,n\}$. $\rho_1,\rho_2,\rho_3,\cdots,\rho_T\in[n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to evict ("hit" means evicting no page, "empty" means evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Input: k: the size of cache n: number of pages

We use [n] for $\{1, 2, 3, \dots, n\}$.

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to

evict ("hit" means evicting no page, "empty" means

evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

Input: k: the size of cache

We use [n] for $\{1,2,3,\cdots,n\}$.

 $n: \mathsf{number} \mathsf{\ of\ pages}$

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \dots, i_T \in \{\text{hit}, \text{empty}\} \cup [n]$: indices of pages to

evict ("hit" means evicting no page, "empty" means

evicting empty page)

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

- Offline Caching: we know the whole sequence ahead of time.
- Online Caching: we have to make decisions on the fly, before seeing future requests.

Q: Which one is more realistic?

A: Online caching

Q: Why do we study the offline caching problem?

A: Use the offline solution as a benchmark to measure the "competitive ratio" of online algorithms

• FIFO(First-In-First-Out): Evict the first-in page in cache

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache

- FIFO(First-In-First-Out): Evict the first-in page in cache
- LRU(Least-Recently-Used): Evict page whose most recent access was earliest
- LFU(Least-Frequently-Used): Evict page that was least frequently requested
- LIFO (Last In First Out): Evict the last-in page in cache
- All the above algorithms are not optimum!
- Indeed all the algorithms are "online", i.e, the decisions can be made without knowing future requests. Online algorithms can not be optimum.

FIFO requests

FIFO is not optimum

FIFO is not optimum

Optimum Offline Caching

Furthest-in-Future (FF)

- Algorithm: every time, evict the page that is not requested until furthest in the future, if we need to evict one.
- The algorithm is **not** an online algorithm, since the decision at a step depends on the request sequence in the future.

Furthest-in-Future (FF)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Recall: Designing and Analyzing Greedy Algorithms

Greedy Algorithm

- Build up the solutions in steps
- At each step, make an irrevocable decision using a "reasonable" strategy

Analysis of Greedy Algorithm

- Safety: Prove that the reasonable strategy is "safe" (key)
- Self-reduce: Show that the remaining task after applying the strategy is to solve a (many) smaller instance(s) of the same problem (usually easy)

Offline Caching Problem

Input: k: the size of cache

n: number of pages

 $\rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n]$: sequence of requests

Output: $i_1, i_2, i_3, \cdots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$

- empty stands for an empty page
- "hit" means evicting no pages

Offline Caching Problem

```
Input: k: the size of cache n: number of pages  \rho_1, \rho_2, \rho_3, \cdots, \rho_T \in [n] \text{: sequence of requests}   p_1, p_2, \cdots, p_k \in \{\text{empty}\} \cup [n] \text{: initial set of pages in cache}
```

- **Output:** $i_1, i_2, i_3, \dots, i_t \in \{\text{hit}, \text{empty}\} \cup [n]$
 - empty stands for an empty page
 - "hit" means evicting no pages