Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

• In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for Y can call the algorithm for X many times.
- However, for most reductions, we call algorithm for X only once

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

- In general, algorithm for \boldsymbol{Y} can call the algorithm for \boldsymbol{X} many times.
- $\bullet\,$ However, for most reductions, we call algorithm for X only once
- That is, for a given instance s_Y for Y, we only construct one instance s_X for X

A Strategy of Polynomial Reduction

- Given an instance s_Y of problem Y, show how to construct in polynomial time an instance s_X of problem such that:
 - s_Y is a yes-instance of $Y \Rightarrow s_X$ is a yes-instance of X
 - s_X is a yes-instance of $X \Rightarrow s_Y$ is a yes-instance of Y

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems

6 Summary

• Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time ${\cal O}(c^n)$ for some constant c>1

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time ${\cal O}(c^n)$ for some constant c>1
 - Best lower bound is $\Omega(n)$

- Try to prove an "unconditional" lower bound on running time of algorithm solving a NP-complete problem.
- For 3-Sat problem:
 - Assume the number of clauses is $\Theta(n)$, n = number variables
 - Best algorithm runs in time $O(c^n)$ for some constant c > 1
 - Best lower bound is $\Omega(n)$
- Essentially we have no techniques for proving lower bound for running time

- Faster exponential time algorithms
- Solving the problem for special cases
- Fixed parameter tractability
- Approximation algorithms

3-SAT:

3-SAT:

• Brute-force: $O(2^n \cdot \operatorname{poly}(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

• Brute-force: $O(n! \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$

3-SAT:

- Brute-force: $O(2^n \cdot \operatorname{poly}(n))$
- $2^n \rightarrow 1.844^n \rightarrow 1.3334^n$
- Practical SAT Solver: solves real-world sat instances with more than 10,000 variables

Travelling Salesman Problem:

- Brute-force: $O(n! \cdot poly(n))$
- Better algorithm: $O(2^n \cdot poly(n))$
- In practice: TSP Solver can solve Euclidean TSP instances with more than 100,000 vertices

• trees (Quiz 10)

- trees (Quiz 10)
- bounded tree-width graphs

- trees (Quiz 10)
- bounded tree-width graphs
- interval graphs

- trees (Quiz 10)
- bounded tree-width graphs
- interval graphs

• • • •

• path (HW2 Problem 2)

- path (HW2 Problem 2)
- trees

- path (HW2 Problem 2)
- trees
- o . . .

Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k

- Problem: whether there is a vertex cover of size k, for a small k (number of nodes is n, number of edges is Θ(n).)
- Brute-force algorithm: $O(kn^{k+1})$
- Better running time : $O(2^k \cdot kn)$
- Running time is $f(k)n^c$ for some c independent of k
- Vertex-Cover is fixed-parameter tractable.

• For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time

- For optimization problems, approximation algorithms will find sub-optimal solutions in polynomial time
- Approximation ratio is the ratio between the quality of the solution output by the algorithm and the quality of the optimal solution
- We want to make the approximation ratio as small as possible, while maintaining the property that the algorithm runs in polynomial time
- There is an 2-approximation for the vertex cover problem: we can efficiently find a vertex cover whose size is at most 2 times that of the optimal vertex cover

2-Approximation Algorithm for Vertex Cover

VertexCover(G)

- 1: $C \leftarrow \emptyset$
- 2: while $E \neq \emptyset$ do
- 3: select an edge $(u, v) \in E$, $C \leftarrow C \cup \{u, v\}$
- 4: Remove from E every edge incident on either u or v
- 5: return C
- Let the set C and C^\ast be the sets output by above algorithm and an optimal alg, respectively. Let S be the set of edges selected.
- Since no two edge in S are covered by the same vertex (Once an edge is picked in line 3, all other edges that are incident on its endpoints are removed from E in line 4), we have |C^{*}| ≥ |S|;
- As we have added both vertices of edge (u, v), we get |C| = 2|S| but C^* have to add one of the two, thus, $|C|/|C^*| \le 2$.

Outline

Some Hard Problems

- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- Dealing with NP-Hard Problems

- We consider decision problems
- Inputs are encoded as $\{0,1\}$ -strings

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- Alice has a supercomputer, fast enough to run an exponential time algorithm
- Bob has a slow computer, which can only run a polynomial-time algorithm

Def. (Informal) The complexity class NP is the set of problems for which Alice can convince Bob a yes instance is a yes instance

- **Def.** B is an efficient certifier for a problem X if
- $\bullet \ B$ is a polynomial-time algorithm that takes two input strings s and t
- there is a polynomial function p such that, X(s) = 1 if and only if there is string t such that $|t| \le p(|s|)$ and B(s,t) = 1.

The string t such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Def. A problem X is called NP-complete if

• $X \in \mathsf{NP}$, and

- **2** $Y \leq_{\mathsf{P}} X$ for every $Y \in \mathsf{NP}$.
 - If any NP-complete problem can be solved in polynomial time, then ${\cal P}={\cal N}{\cal P}$
 - Unless P = NP, a NP-complete problem can not be solved in polynomial time

Summary

Proof of NP-Completeness for Circuit-Sat

- Fact 1: a polynomial-time algorithm can be converted to a polynomial-size circuit
- Fact 2: for a problem in NP, there is a efficient certifier.
- Given a problem $X \in NP$, let B(s,t) be the certifier
- \bullet Convert $B(\boldsymbol{s},t)$ to a circuit and hard-wire \boldsymbol{s} to the input gates
- $\bullet \ s$ is a yes-instance if and only if the resulting circuit is satisfiable
- Proof of NP-Completeness for other problems by reductions