A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.




A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.



A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once



A Strategy of Polynomial Reduction

Recall the definition of polynomial time reductions:

Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

@ In general, algorithm for Y can call the algorithm for X many
times.

@ However, for most reductions, we call algorithm for X only once

@ That is, for a given instance sy for Y, we only construct one
instance sx for X



A Strategy of Polynomial Reduction

@ Given an instance sy of problem Y, show how to construct in
polynomial time an instance sx of problem such that:
@ sy is a yes-instance of Y = sx is a yes-instance of X
e sy is a yes-instance of X = sy is a yes-instance of Y
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Q: How far away are we from proving or disproving P = NP?

@ Try to prove an “unconditional” lower bound on running time of
algorithm solving a NP-complete problem.

@ For 3-Sat problem:
o Assume the number of clauses is ©(n), n = number variables
e Best algorithm runs in time O(c™) for some constant ¢ > 1
o Best lower bound is Q(n)

o Essentially we have no techniques for proving lower bound for
running time



Dealing with NP-Hard Problems

@ Faster exponential time algorithms
@ Solving the problem for special cases
o Fixed parameter tractability

@ Approximation algorithms
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Faster Exponential Time Algorithms

3-SAT:
@ Brute-force: O(2" - poly(n))
@ 2" — 1.844" — 1.3334"

@ Practical SAT Solver: solves real-world sat instances with more
than 10,000 variables

Travelling Salesman Problem:
@ Brute-force: O(n!- poly(n))
@ Better algorithm: O(2" - poly(n))

@ In practice: TSP Solver can solve Euclidean TSP instances with
more than 100,000 vertices
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Fixed Parameter Tractability

@ Problem: whether there is a vertex
cover of size k, for a small k& (number
of nodes is n, number of edges is

O(n).)
e Brute-force algorithm: O(knk+1)
@ Better running time : O(2% - kn)

@ Running time is f(k)n® for some ¢
independent of k£

@ Vertex-Cover is fixed-parameter
tractable.
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Approximation Algorithms

@ For optimization problems, approximation algorithms will find
sub-optimal solutions in polynomial time

@ Approximation ratio is the ratio between the quality of the solution
output by the algorithm and the quality of the optimal solution

@ We want to make the approximation ratio as small as possible,
while maintaining the property that the algorithm runs in
polynomial time

@ There is an 2-approximation for the vertex cover problem: we can
efficiently find a vertex cover whose size is at most 2 times that of
the optimal vertex cover



2-Approximation Algorithm for Vertex Cover

VertexCover(G)

1. C«0

2: while £ # () do

3: select an edge (u,v) € E, C < C U{u,v}

4 Remove from E' every edge incident on either v or v
5

: return C )

@ Let the set C' and C* be the sets output by above algorithm and
an optimal alg, respectively. Let S be the set of edges selected.

@ Since no two edge in S are covered by the same vertex (Once an
edge is picked in line 3, all other edges that are incident on its
endpoints are removed from E in line 4), we have |C*| > |S|;

@ As we have added both vertices of edge (u,v), we get |C| = 2|5
but C* have to add one of the two, thus, |C|/|C*| < 2.



© Summary



@ We consider decision problems

@ Inputs are encoded as {0, 1}-strings

Def. The complexity class P is the set of decision problems X that
can be solved in polynomial time. J

@ Alice has a supercomputer, fast enough to run an exponential
time algorithm

@ Bob has a slow computer, which can only run a polynomial-time
algorithm

Def. (Informal) The complexity class NP is the set of problems for
which Alice can convince Bob a yes instance is a yes instance J




Def. B is an efficient certifier for a problem X if

@ B is a polynomial-time algorithm that takes two input strings s
and t

o there is a polynomial function p such that, X (s) =1 if and only if
there is string ¢ such that |t| < p(|s|) and B(s,t) = 1.

The string ¢ such that B(s,t) = 1 is called a certificate.

Def. The complexity class NP is the set of all problems for which
there exists an efficient certifier. )




Def. Given a black box algorithm A that solves a problem X, if any
instance of a problem Y can be solved using a polynomial number of
standard computational steps, plus a polynomial number of calls to
A, then we say Y is polynomial-time reducible to X, denoted as

Y <p X.

Def. A problem X is called NP-complete if
Q@ X € NP, and
Q Y <p X forevery Y € NP.

o If any NP-complete problem can be solved in polynomial time,
then P= NP

@ Unless P = NP, a NP-complete problem can not be solved in
polynomial time



Circuit-Sat

3-Sat
Clique Ind-Set HC 3D-Matching 3-Coloring
Vertex-Cover TSP Subset-Sum

Set-Cover Knapsack




Proof of NP-Completeness for Circuit-Sat

@ Fact 1: a polynomial-time algorithm can be converted to a
polynomial-size circuit

Fact 2: for a problem in NP, there is a efficient certifier.

Given a problem X € NP, let B(s,t) be the certifier

Convert B(s,t) to a circuit and hard-wire s to the input gates

s is a yes-instance if and only if the resulting circuit is satisfiable

v

Proof of NP-Completeness for other problems by reductions



