Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

 Input: graph $G=(V, E)$Output: whether G contains a Hamiltonian cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

Example: Hamiltonian Cycle Problem

Hamiltonian Cycle (HC) Problem

Input: graph $G=(V, E)$
Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m)=2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the size of the maximum independent set of G

Maximum Independent Set Problem

Def. An independent set of $G=(V, E)$ is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph $G=(V, E)$
Output: the size of the maximum independent set of G

- Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.
Output: whether the boolean formula is satisfiable

- Example: $\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)\right)$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.
Output: whether the boolean formula is satisfiable

- Example: $\neg\left(\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)\right)$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
- Formula Satisfiablity is NP-hard

Outline

(1) Some Hard Problems
(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness

4 NP-Complete Problems
(5) Dealing with NP-Hard Problems
(6) Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

- When we define the P and NP, we only consider decision problems.

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes $/ \mathrm{no}$).

- When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X^{\prime} of the problem. If we have a polynomial time algorithm for the decision version X^{\prime}, we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph $G=(V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L

Optimization to Decision

Shortest Path

Input: graph $G=(V, E)$, weight w, s, t and a bound L
Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k
Output: whether there is an independent set of size at least k

Encoding

The input of a problem will be encoded as a binary string.

Encoding

The input of a problem will be encoded as a binary string.

Example: Sorting problem

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String:

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 11/

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: $11 / 110$ /

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 11/110/1100100/

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 11/110/1100100/ 1001/

Encoding

The input of a problem will be encoded as a binary string.
Example: Sorting problem

- Input: (3, 6, 100, 9, 60)
- Binary: $(11,110,1100100,1001,111100)$
- String: 11/110/1100100/ 1001/111100/

Encoding

The input of an problem will be encoded as a binary string.

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- $(0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$

Encoding

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- ($0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$
- Encode the sequence into a binary string as before

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

Encoding

Def. The size of an input is the length of the encoded string s for the input, denoted as $|s|$.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Function

 $X:\{0,1\}^{*} \rightarrow\{0,1\}$Def. A decision problem X is a function mapping $\{0,1\}^{*}$ to $\{0,1\}$ such that for any $s \in\{0,1\}^{*}, X(s)$ is the correct output for input s.

- $\{0,1\}^{*}$: the set of all binary strings of any length.

Define Problem as a Function $X:\{0,1\}^{*} \rightarrow\{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^{*}$ to $\{0,1\}$ such that for any $s \in\{0,1\}^{*}, X(s)$ is the correct output for input s.

- $\{0,1\}^{*}$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, $A(s)=X(s)$ for any binary string s

Define Problem as a Function

 $X:\{0,1\}^{*} \rightarrow\{0,1\}$Def. A decision problem X is a function mapping $\{0,1\}^{*}$ to $\{0,1\}$ such that for any $s \in\{0,1\}^{*}, X(s)$ is the correct output for input s.

- $\{0,1\}^{*}$: the set of all binary strings of any length.

Def. An algorithm A solves a problem X if, $A(s)=X(s)$ for any binary string s

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most $p(|s|)$ steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

- The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

for Hamiltonian Cycle (HC)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given a graph $G=(V, E)$ with a HC , how can Alice convince Bob that G contains a Hamiltonian cycle?

A: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k

for Independent Set (Ind-Set)

- Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- Bob has a slow computer, which can only run an $O\left(n^{3}\right)$-time algorithm

Q: Given graph $G=(V, E)$ and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1 .
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1 .
- there is a polynomial function p such that, $X(s)=1$ if and only if there is string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
The string t such that $B(s, t)=1$ is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

HC (Hamiltonian Cycle) \in NP

- Input: Graph G

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time

HC (Hamiltonian Cycle) \in NP

- Input: Graph G
- Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $|\operatorname{encoding}(S)| \leq p(|\operatorname{encoding}(G)|)$ for some polynomial function p
- Certifier $B: B(G, S)=1$ if and only if S gives an HC in G
- Clearly, B runs in polynomial time
- $\mathrm{HC}(G)=1 \quad \Longleftrightarrow \quad \exists S, B(G, S)=1$

MIS (Maximum Independent Set) \in NP

- Input: graph $G=(V, E)$ and integer k

MIS (Maximum Independent Set) \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- \mid encoding $(S) \mid \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p

MIS (Maximum Independent Set) \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- \mid encoding $(S) \mid \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time

MIS (Maximum Independent Set) \in NP

- Input: graph $G=(V, E)$ and integer k
- Certificate: a set $S \subseteq V$ of size k
- \mid encoding $(S) \mid \leq p(|\operatorname{encoding}(G, k)|)$ for some polynomial function p
- Certifier $B: B((G, k), S)=1$ if and only if S is an independent set in G
- Clearly, B runs in polynomial time
- $\operatorname{MIS}(G, k)=1 \quad \Longleftrightarrow \quad \exists S, B((G, k), S)=1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 1 ?

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates
Output: whether there is an assignment such that the output is 1 ?

- Is Circuit-Sat \in NP?

HC

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

$\overline{H C}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance

$\overline{\mathrm{HC}}$

Input: graph $G=(V, E)$
Output: whether G does not contain a Hamiltonian cycle

- Is $\overline{\mathrm{HC}} \in \mathrm{NP}$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\mathrm{HC}} \in$ Co-NP

The Complexity Class Co-NP

Def. For a problem X, the problem \bar{X} is the problem such that $\bar{X}(s)=1$ if and only if $X(s)=0$.

Def. Co-NP is the set of decision problems X such that $\bar{X} \in \mathrm{NP}$.

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology

Def. A tautology is a boolean formula that always evaluates to 1 .

Tautology Problem

Input: a boolean formula
Output: whether the formula is a tautology

- e.g. $\left(\neg x_{1} \wedge x_{2}\right) \vee\left(\neg x_{1} \wedge \neg x_{3}\right) \vee x_{1} \vee\left(\neg x_{2} \wedge x_{3}\right)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology \in Co-NP
$P \subseteq N P$
$27 / 75$
- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $P \subseteq N P$
- Let $X \in \mathrm{P}$ and $X(s)=1$

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathrm{P}$, Bob can check whether $X(s)=1$ by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in N P$ and $P \subseteq N P$
- Similarly, $\mathrm{P} \subseteq$ Co-NP, thus $\mathrm{P} \subseteq$ NP \cap Co-NP

Is $P=N P ?$

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq N P$ and prove that problems do not have polynomial time algorithms.

Is $P=N P ?$

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq N P$
- It would be too amazing if $\mathrm{P}=\mathrm{NP}$: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq N P$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
- if $P \neq N P$, then $H C \notin P$
- $\mathrm{HC} \notin \mathrm{P}$, unless $\mathrm{P}=\mathrm{NP}$

Is NP = Co-NP?

- Again, a big open problem

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe NP $=$ Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathrm{NP} \Longleftrightarrow \bar{X} \in$ Co-NP and $\mathrm{P} \subseteq \mathrm{NP} \cap$ Co-NP

- People commonly believe we are in the 4th scenario

Outline

(1) Some Hard Problems

(2) P, NP and Co-NP
(3) Polynomial Time Reductions and NP-Completeness
(4) NP-Complete Problems
(5) Dealing with NP-Hard Problems
(0) Summary

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_{P} X$.

To prove positive results:
Suppose $Y \leq_{P} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:
Suppose $Y \leq_{P} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

 Input: $G=(V, E)$ and $s, t \in V$Output: whether there is a Hamiltonian path from s to t in G

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Polynomial-Time Reduction: Example

Hamiltonian-Path (HP) problem

Input: $G=(V, E)$ and $s, t \in V$
Output: whether there is a Hamiltonian path from s to t in G

Lemma $\mathrm{HP} \leq_{\mathrm{P}} \mathrm{HC}$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.

