Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

 Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time

Hamiltonian Cycle (HC) Problem

Input: graph G = (V, E)

Output: whether G contains a Hamiltonian cycle

Algorithm for Hamiltonian Cycle Problem:

- Enumerate all possible permutations, and check if it corresponds to a Hamiltonian Cycle
- Running time: $O(n!m) = 2^{O(n \lg n)}$
- Better algorithm: $2^{O(n)}$
- Far away from polynomial time
- HC is NP-hard: it is unlikely that it can be solved in polynomial time.

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

Def. An independent set of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: graph G = (V, E)

Output: the size of the maximum independent set of G

Maximum Independent Set is NP-hard

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.

Formula Satisfiability

Formula Satisfiability

Input: boolean formula with n variables, with \vee, \wedge, \neg operators.

Output: whether the boolean formula is satisfiable

- Example: $\neg((\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3))$ is not satisfiable
- Trivial algorithm: enumerate all possible assignments, and check if each assignment satisfies the formula. The algorithm runs in exponential time.
- Formula Satisfiablity is NP-hard

Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- 3 Polynomial Time Reductions and NP-Completenes
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Decision Problem Vs Optimization Problem

Def. A problem X is called a decision problem if the output is either 0 or 1 (yes/no).

• When we define the P and NP, we only consider decision problems.

Fact For each optimization problem X, there is a decision version X' of the problem. If we have a polynomial time algorithm for the decision version X', we can solve the original problem X in polynomial time.

Optimization to Decision

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Optimization to Decision

Shortest Path

Input: graph G = (V, E), weight w, s, t and a bound L

Output: whether there is a path from s to t of length at most L

Maximum Independent Set

Input: a graph G and a bound k

Output: whether there is an independent set of size at least \boldsymbol{k}

The input of a problem will be encoded as a binary string.

The input of a problem will be encoded as a binary string.

The input of a problem will be encoded as a binary string.

Example: Sorting problem

• Input: (3, 6, 100, 9, 60)

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String:

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/ 1001/

The input of a problem will be encoded as a binary string.

- Input: (3, 6, 100, 9, 60)
- Binary: (11, 110, 1100100, 1001, 111100)
- String: 11/110/1100100/ 1001/111100/

The input of an problem will be encoded as a binary string.

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

 $\bullet \ (0,3,0,4,2,4,3,5,4,6,4,7,5,8,7,9,8,9)$

The input of an problem will be encoded as a binary string.

Example: Interval Scheduling Problem

- (0, 3, 0, 4, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 7, 9, 8, 9)
- Encode the sequence into a binary string as before

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

Def. The size of an input is the length of the encoded string s for the input, denoted as |s|.

Q: Does it matter how we encode the input instances?

A: No! As long as we are using a "natural" encoding. We only care whether the running time is polynomial or not

Define Problem as a Function $X: \{0,1\}^* \rightarrow \{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^*$ to $\{0,1\}$ such that for any $s\in\{0,1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

Define Problem as a Function $X: \{0,1\}^* \rightarrow \{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^*$ to $\{0,1\}$ such that for any $s \in \{0,1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

 $\mbox{\bf Def.}\;$ An algorithm A solves a problem X if, A(s)=X(s) for any binary string s

Define Problem as a Function $X: \{0,1\}^* \to \{0,1\}$

Def. A decision problem X is a function mapping $\{0,1\}^*$ to $\{0,1\}$ such that for any $s \in \{0,1\}^*$, X(s) is the correct output for input s.

• $\{0,1\}^*$: the set of all binary strings of any length.

 $\mbox{\bf Def.}\;$ An algorithm A solves a problem X if, A(s)=X(s) for any binary string s

Def. A has a polynomial running time if there is a polynomial function $p(\cdot)$ so that for every string s, the algorithm A terminates on s in at most p(|s|) steps.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

Complexity Class P

Def. The complexity class P is the set of decision problems X that can be solved in polynomial time.

• The decision versions of interval scheduling, shortest path and minimum spanning tree all in P.

 \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- \bullet Bob has a slow computer, which can only run an ${\cal O}(n^3)\text{-time}$ algorithm

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given a graph G=(V,E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given a graph G=(V,E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

 $\ensuremath{\mathbf{A}}\xspace$: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for HC
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given a graph G=(V,E) with a HC, how can Alice convince Bob that G contains a Hamiltonian cycle?

 $\ensuremath{\mathbf{A}}\xspace$: Alice gives a Hamiltonian cycle to Bob, and Bob checks if it is really a Hamiltonian cycle of G

Def. The message Alice sends to Bob is called a certificate, and the algorithm Bob runs is called a certifier.

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given graph G=(V,E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given graph G=(V,E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given graph G=(V,E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

Certificate: a set of size k

- \bullet Alice has a supercomputer, fast enough to run the $2^{O(n)}$ time algorithm for Ind-Set
- \bullet Bob has a slow computer, which can only run an $O(n^3)\text{-time}$ algorithm

Q: Given graph G=(V,E) and integer k, such that there is an independent set of size k in G, how can Alice convince Bob that there is such a set?

A: Alice gives a set of size k to Bob and Bob checks if it is really a independent set in G.

- Certificate: a set of size k
- Certifier: check if the given set is really an independent set

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- ullet B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- ullet there is a polynomial function p such that, X(s)=1 if and only if there is string t such that $|t|\leq p(|s|)$ and B(s,t)=1.

The string t such that B(s,t)=1 is called a certificate.

The Complexity Class NP

Def. B is an efficient certifier for a problem X if

- ullet B is a polynomial-time algorithm that takes two input strings s and t, and outputs 0 or 1.
- there is a polynomial function p such that, X(s)=1 if and only if there is string t such that $|t| \leq p(|s|)$ and B(s,t)=1.

The string t such that B(s,t)=1 is called a certificate.

Def. The complexity class NP is the set of all problems for which there exists an efficient certifier.

$\mathsf{HC}\ (\mathsf{Hamiltonian}\ \mathsf{Cycle}) \in \mathsf{NP}$

ullet Input: Graph G

HC (Hamiltonian Cycle) ∈ NP

- ullet Input: Graph G
- ullet Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G)|)$ for some polynomial function p

$\mathsf{HC}\ (\mathsf{Hamiltonian}\ \mathsf{Cycle}) \in \mathsf{NP}$

- ullet Input: Graph G
- ullet Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G)|)$ for some polynomial function p
- Certifier B: B(G, S) = 1 if and only if S gives an HC in G
- ullet Clearly, B runs in polynomial time

$\mathsf{HC}\ (\mathsf{Hamiltonian}\ \mathsf{Cycle}) \in \mathsf{NP}$

- ullet Input: Graph G
- ullet Certificate: a permutation S of V that forms a Hamiltonian Cycle
- $\bullet \ |\mathsf{encoding}(S)| \leq p(|\mathsf{encoding}(G)|) \ \text{for some polynomial function} \ p$
- Certifier B: B(G, S) = 1 if and only if S gives an HC in G
- ullet Clearly, B runs in polynomial time

•
$$HC(G) = 1 \iff \exists S, B(G, S) = 1$$

$\overline{\mathsf{MIS}}$ (Maximum Independent Set) $\in \mathsf{NP}$

 $\bullet \ \, \text{Input: graph} \,\, G = (V,E) \,\, \text{and integer} \,\, k \\$

MIS (Maximum Independent Set) ∈ NP

- Input: graph G = (V, E) and integer k
- ullet Certificate: a set $S\subseteq V$ of size k
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G,k)|)$ for some polynomial function p

MIS (Maximum Independent Set) ∈ NP

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G,k)|)$ for some polynomial function p
- \bullet Certifier $B \colon B((G,k),S) = 1$ if and only if S is an independent set in G
- ullet Clearly, B runs in polynomial time

MIS (Maximum Independent Set) ∈ NP

- Input: graph G = (V, E) and integer k
- Certificate: a set $S \subseteq V$ of size k
- $\bullet \ |\mathrm{encoding}(S)| \leq p(|\mathrm{encoding}(G,k)|)$ for some polynomial function p
- \bullet Certifier $B \colon B((G,k),S) = 1$ if and only if S is an independent set in G
- ullet Clearly, B runs in polynomial time
- MIS(G, k) = 1 \iff $\exists S, B((G, k), S) = 1$

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Circuit Satisfiablity (Circuit-Sat) Problem

Input: a circuit with and/or/not gates

Output: whether there is an assignment such that the output is 1?

Is Circuit-Sat ∈ NP?

Input: graph G = (V, E)

Input: graph G = (V, E)

Output: whether G does not contain a Hamiltonian cycle

• Is $\overline{HC} \in NP$?

Input: graph G = (V, E)

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.

Input: graph G = (V, E)

- Is $\overline{HC} \in NP$?
- ullet Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely

Input: graph G = (V, E)

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance

Input: graph G = (V, E)

- Is $\overline{HC} \in NP$?
- Can Alice convince Bob that G is a yes-instance (i.e, G does not contain a HC), if this is true.
- Unlikely
- Alice can only convince Bob that G is a no-instance
- $\overline{\mathsf{HC}} \in \mathsf{Co}\text{-}\mathsf{NP}$

The Complexity Class Co-NP

Def. For a problem X, the problem \overline{X} is the problem such that $\overline{X}(s)=1$ if and only if X(s)=0.

Def. Co-NP is the set of decision problems X such that $\overline{X} \in NP$.

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

• e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology

Def. A tautology is a boolean formula that always evaluates to 1.

Tautology Problem

Input: a boolean formula

Output: whether the formula is a tautology

- e.g. $(\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_3) \lor x_1 \lor (\neg x_2 \land x_3)$ is a tautology
- Bob can certify that a formula is not a tautology
- Thus Tautology ∈ Co-NP

$\mathsf{P}\subseteq\mathsf{NP}$

$P \subseteq NP$

• Let $X \in \mathsf{P}$ and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

$P \subseteq NP$

• Let $X \in \mathsf{P}$ and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

$P \subseteq NP$

• Let $X \in \mathsf{P}$ and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

The certificate is an empty string

$P \subseteq NP$

• Let $X \in \mathsf{P}$ and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$

$P \subseteq NP$

• Let $X \in \mathsf{P}$ and X(s) = 1

Q: How can Alice convince Bob that s is a yes instance?

A: Since $X \in \mathsf{P}$, Bob can check whether X(s) = 1 by himself, without Alice's help.

- The certificate is an empty string
- Thus, $X \in \mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP}$
- Similarly, $P \subseteq Co-NP$, thus $P \subseteq NP \cap Co-NP$

- A famous, big, and fundamental open problem in computer science
- Most researchers believe $P \neq NP$
- ullet It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.

- A famous, big, and fundamental open problem in computer science
- Little progress has been made
- Most researchers believe $P \neq NP$
- It would be too amazing if P = NP: if one can check a solution efficiently, then one can find a solution efficiently
- We assume $P \neq NP$ and prove that problems do not have polynomial time algorithms.
- We said it is unlikely that Hamiltonian Cycle can be solved in polynomial time:
 - if $P \neq NP$, then $HC \notin P$
 - HC \notin P, unless P = NP

Is NP = Co-NP?

• Again, a big open problem

Is NP = Co-NP?

- Again, a big open problem
- Most researchers believe NP \neq Co-NP.

4 Possibilities of Relationships

Notice that $X \in \mathsf{NP} \Longleftrightarrow \overline{X} \in \mathsf{Co}\text{-}\mathsf{NP}$ and $\mathsf{P} \subseteq \mathsf{NP} \cap \mathsf{Co}\text{-}\mathsf{NP}$

$$P = NP = Co-NP$$

People commonly believe we are in the 4th scenario

Outline

- Some Hard Problems
- 2 P, NP and Co-NP
- Polynomial Time Reductions and NP-Completeness
- 4 NP-Complete Problems
- 5 Dealing with NP-Hard Problems
- **6** Summary

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Polynomial-Time Reductions

Def. Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

To prove positive results:

Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

To prove negative results:

Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Hamiltonian-Path (HP) problem

Input: G = (V, E) and $s, t \in V$

Output: whether there is a Hamiltonian path from s to t in G

Lemma $HP \leq_P HC$.

Obs. G has a HP from s to t if and only if graph on right side has a HC.