Quicksort Can Be Implemented as an “In-Place”

Sorting Algorithm

@ In-Place Sorting Algorithm: an algorithm that only uses “small
extra space. J

qj

1713711512938 |45 |25 |64 |69 |76|94|92|75|82|85

e To partition the array into two parts, we only need O(1) extra
space.

partition(A, ¢,)
1. p < random integer between ¢ and r, swap A[p| and A[/(]
R AR
3: while true do

4:
5-
6:
7
8

9:

while i < j and Afi] < A[j]do j <+ j—1
if - = j then break

swap Afi] and A[j]; i+ i+ 1

while i < j and Afi] < A[j] do i< i+1
if = j then break

swap Afi] and A[j]; j«+j—1

10: return 2

In-Place Implementation of Quick-Sort

quicksort(A, ¢, r)
1: if ¢ > r then return
2: m < patition(A, ¢, r)
3: quicksort(A,¢,m — 1)
4: quicksort(A,m + 1,r)

@ To sort an array A of size n, call quicksort(A,1,n).

Note: We pass the array A by reference, instead of by copying. J

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v
31 81(12120|32|48
v
5

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

;
i

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31 81(12120|32|48

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31 81(12120|32|48

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

12120|32]48

¢
'

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

12120|32]48

¢
'

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31 81(12120|32|48

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31 81(12120|32|48

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

v

31 81(12120|32|48

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

Merge-Sort is Not In-Place

@ To merge two arrays, we need a third array with size equaling the
total size of two arrays

© Quicksort and Selection

@ Lower Bound for Comparison-Based Sorting Algorithms

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)

A: No, for comparison-based sorting algorithms. J

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)

A: No, for comparison-based sorting algorithms. J

Comparison-Based Sorting Algorithms
@ To sort, we are only allowed to compare two elements

@ We can not use “internal structures” of the elements

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

J

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

J

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn).

J

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

@ You can ask Bob “yes/no” questions about z.

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn). J

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

@ You can ask Bob “yes/no” questions about z.

Q: How many questions do you need to ask Bob in order to know x?J

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn). J

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

@ You can ask Bob “yes/no” questions about z.

Q: How many questions do you need to ask Bob in order to know x?J

A: [log, N]. |

Lemma The (worst-case) running time of any comparison-based
sorting algorithm is Q(nlgn). ’

@ Bob has one number z in his hand, z € {1,2,3,--- | N}.

@ You can ask Bob “yes/no” questions about z.

Q: How many questions do you need to ask Bob in order to know z7? ’

A: [log, N1.)

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)
A: No, for comparison-based sorting algorithms. J
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)
A: No, for comparison-based sorting algorithms.)
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 77?7 J

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)
A: No, for comparison-based sorting algorithms.)
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob “yes/no" questions about 7.

Q: How many questions do you need to ask in order to get the
permutation 77?7 J

A: log,n! =0O(nlgn)]

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)
A: No, for comparison-based sorting algorithms. J
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
w?"

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)
A: No, for comparison-based sorting algorithms.)
@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
w?"

Q: How many questions do you need to ask in order to get the
permutation 77 J

Comparison-Based Sorting Algorithms

Q: Can we do better than O(nlogn) for sorting?)

A: No, for comparison-based sorting algorithms.)

@ Bob has a permutation m over {1,2,3,--- ,n} in his hand.

@ You can ask Bob questions of the form “does ¢ appear before j in
w?"

Q: How many questions do you need to ask in order to get the

permutation 77 J

A: At least log,n! = ©(nlgn) J

© Quicksort and Selection

@ Selection Problem

Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

38/75

Selection Problem
Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlgn).

Selection Problem
Input: a set A of n numbers, and 1 <i<n

Output: the i-th smallest number in A

@ Sorting solves the problem in time O(nlgn).

@ Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

1: if n <1 then return A

2: & < lower median of A

3: Ar < elements in A that are less than z > Divide

4: AR <+ elements in A that are greater than z > Divide

5. By, < quicksort(Ay, Ay .size) > Conquer

6: Br < quicksort(Ag, Ag.size) > Conquer

7: t < number of times x appear A

8: return the array obtained by concatenating B, the array
containing t copies of x, and Bg)

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x > Divide
AR < elements in A that are greater than x > Divide
if i < A; .size then

return selection(Ay, Ay .size, 1) > Conquer
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
else

return

[

S R I

—
=

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x > Divide
AR < elements in A that are greater than x > Divide
if i < A; .size then

return selection(Ay, Ay .size, 1) > Conquer
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
else

return

[

S R I

—
=

@ Recurrence for selection: T'(n) = T'(n/2) + O(n)

Selection Algorithm with Median Finder

selection(A, n, 1)
if n =1 then return A
x < lower median of A
A < elements in A that are less than x > Divide
AR < elements in A that are greater than x > Divide
if i < A; .size then

return selection(Ay, Ay .size, 1) > Conquer
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
else

return

[

S R I

—
=

@ Recurrence for selection: T'(n) = T'(n/2) + O(n)

@ Solving recurrence: T'(n) = O(n)

Randomized Selection Algorithm

selection(A, n, 1)

1: if n =1 thenreturn A

2: « + random element of A (called pivot)

3: Ay < elements in A that are less than x > Divide
4: Ap < elements in A that are greater than z > Divide
5. if ¢ < Aj.size then

6: return selection(Ay, Ay .size, 1) > Conquer
7: else if i > n — Apr.size then

8: return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
9: else

10: return x

Randomized Selection Algorithm

selection(A, n, 1)
if n =1 thenreturn A
x < random element of A (called pivot)
A < elements in A that are less than x > Divide
AR < elements in A that are greater than x > Divide
if i < A; .size then

return selection(Ay, Ay .size, 1) > Conquer
else if i > n — Apg.size then

return selection(Ag, Ag.size,i — (n — Ag.size)) > Conquer
else

return x

[

o RN

—
=

@ expected running time = O(n)

@ Polynomial Multiplication

Input: two polynomials of degree n — 1

Output: product of two polynomials

43/75

Input: two polynomials of degree n — 1

Output: product of two polynomials

(323 + 22% — 5z +4) x (22° — 322 + 62 — 5)

43/75

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 + 22% — 5z +4) x (22° — 322 + 62 — 5)
= 62°% — 92° 4 182* — 1523

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 25z

+ 823 — 1222 4 242 — 20
= 62% — 525 + 22* + 2023 — 5222 + 492 — 20

Polynomial Multiplication
Input: two polynomials of degree n — 1

Output: product of two polynomials

Example:

(323 + 22% — 5z +4) x (22° — 322 + 62 — 5)
= 62°% — 92° 4 182* — 1523

+ 425 — 62* + 1223 — 1022

— 10z* + 1523 — 3022 + 25z

+ 823 — 1222 + 242 — 20
= 62% — 525 + 22* + 2023 — 5222 + 492 — 20

o Input: (4,-5,2,3),(—5,6,—3,2)
o Output: (—20,49, —52,20,2, —5,6)

Naive Algorithm

polynomial-multiplication(A, B, n)

1: let C[k] < 0 for every k =0,1,2,--- ,2n — 2
2. fori<0Oton—1do

3: for j < 0ton—1do

4 Cli+ j] < C[i + j] + Ali] x Blj]

5. return C'

Naive Algorithm

polynomial-multiplication(A, B, n)

1: let C[k] < 0 for every k =0,1,2,--- ,2n — 2
2. fori<0Oton—1do

3: for j < 0ton—1do

4 Cli+ j] < C[i + j] + Ali] x Blj]

5. return C'

Running time: O(n?)

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 222 — 5r +4 = (32 + 2)2® + (—5z + 4)
§(0) = 20° 328 4 60— 5 = (2 — 8)a” + (62— 5)

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 222 — 5r +4 = (32 + 2)2® + (—5z + 4)
q(z) = 22° — 32% + 62 — 5 = (22 — 3)2> + (62 — 5)

(x): degree of n — 1 (assume n is even)
()

= pu()a"? + pr(@),
u(z), pr(x): polynomials of degree n/2 — 1.

e p
° p(x
ep

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 222 — 5r +4 = (32 + 2)2® + (—5z + 4)
q(z) = 22° — 32% + 62 — 5 = (22 — 3)2> + (62 — 5)

(x): degree of n — 1 (assume n is even)
()

= pu()a"? + pr(@),
u(z), pr(x): polynomials of degree n/2 — 1.

e p
° p(x
ep

pq = (puz™? + pr) (quz™? + q1)

Divide-and-Conquer for Polynomial Multiplication

p(z) = 32% + 222 — 5r +4 = (32 + 2)2® + (—5z + 4)
q(z) = 22° — 32% + 62 — 5 = (22 — 3)2> + (62 — 5)

(x): degree of n — 1 (assume n is even)
()

= pu()a"? + pr(@),
u(z), pr(x): polynomials of degree n/2 — 1.

e p
° p(x
ep

pq = (prz""? + pr) (quz™? + qr)
= prana" + (prqr + pram) 2™ + prar

